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resumo 
 
 

Este trabalho aborda o problema de capacidade de imitação da locomoção 
humana através da utilização de trajetórias de baixo nível codificadas com 
primitivas de movimento e utilizá-las para depois generalizar para novas 
situações, partindo apenas de uma demonstração única. Assim, nesta linha de 
pensamento, os principais objetivos deste trabalho são dois: o primeiro é 
analisar, extrair e codificar demonstrações efetuadas por um humano, obtidas 
por um sistema de captura de movimento de forma a modelar tarefas de 
locomoção bípede. Contudo, esta transferência não está limitada à simples 
reprodução desses movimentos, requerendo uma evolução das capacidades 
para adaptação a novas situações, assim como lidar com perturbações 
inesperadas. Assim, o segundo objetivo é o desenvolvimento e avaliação de 
uma estrutura de controlo com capacidade de modelação das ações, de tal 
forma que a demonstração única apreendida possa ser modificada para o robô 
se adaptar a diversas situações, tendo em conta a sua dinâmica e o ambiente 
onde está inserido. 
A ideia por detrás desta abordagem é resolver o problema da generalização a 
partir de uma demonstração única, combinando para isso duas estruturas 
básicas. A primeira consiste num sistema gerador de padrões baseado em 
primitivas de movimento utilizando sistemas dinâmicos (DS). Esta abordagem 
de codificação de movimentos possui propriedades desejáveis que a torna ideal 
para geração de trajetórias, tais como a possibilidade de modificar determinados 
parâmetros em tempo real, tais como a amplitude ou a frequência do ciclo do 
movimento e robustez a pequenas perturbações. A segunda estrutura, que está 
embebida na anterior, é composta por um conjunto de osciladores acoplados 
em fase que organizam as ações de unidades funcionais de forma coordenada. 
Mudanças em determinadas condições, como o instante de contacto ou 
impactos com o solo, levam a modelos com múltiplas fases. Assim, em vez de 
forçar o movimento do robô a situações pré-determinadas de forma temporal, o 
gerador de padrões de movimento proposto explora a transição entre diferentes 
fases que surgem da interação do robô com o ambiente, despoletadas por 
eventos sensoriais. A abordagem proposta é testada numa estrutura de 
simulação dinâmica, sendo que várias experiências são efetuadas para avaliar 
os métodos e o desempenho dos mesmos. 
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Abstract 
 

This work addresses the problem of learning to imitate human locomotion actions 
through low-level trajectories encoded with motion primitives and generalizing 
them to new situations from a single demonstration. In this line of thought, the 
main objectives of this work are twofold: The first is to analyze, extract and 
encode human demonstrations taken from motion capture data in order to model 
biped locomotion tasks. However, transferring motion skills from humans to 
robots is not limited to the simple reproduction, but requires the evaluation of 
their ability to adapt to new situations, as well as to deal with unexpected 
disturbances. Therefore, the second objective is to develop and evaluate a 
control framework for action shaping such that the single-demonstration can be 
modulated to varying situations, taking into account the dynamics of the robot 
and its environment.  
The idea behind the approach is to address the problem of generalization from 
a single-demonstration by combining two basic structures. The first structure is 
a pattern generator system consisting of movement primitives learned and 
modelled by dynamical systems (DS). This encoding approach possesses 
desirable properties that make them well-suited for trajectory generation, namely 
the possibility to change parameters online such as the amplitude and the 
frequency of the limit cycle and the intrinsic robustness against small 
perturbations. The second structure, which is embedded in the previous one, 
consists of coupled phase oscillators that organize actions into functional 
coordinated units. The changing contact conditions plus the associated impacts 
with the ground lead to models with multiple phases. Instead of forcing the robot’s 
motion into a predefined fixed timing, the proposed pattern generator explores 
transition between phases that emerge from the interaction of the robot system 
with the environment, triggered by sensor-driven events. The proposed approach 
is tested in a dynamics simulation framework and several experiments are 
conducted to validate the methods and to assess the performance of a humanoid 
robot. 
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Chapter 1  

Introduction 

Over the recent years, the interest in robotic systems dedicated to complex tasks has 

increased remarkably influenced by the use of state of the art supporting technologies, 

the demand for innovative solutions and the search for new areas of potential 

application (Bekey et al., 2008; Siciliano & Khatib, 2007). Thereby, the field of robotics 

is rapidly expanding into human environments and particularly engaged in its new 

challenges: interacting, exploring, and working with humans. In line with this, the new 

generation of robots will increasingly touch people and their lives, which permits to 

foresee an important step forward and a significant socio-economic impact in the 

forthcoming years. Additionally, with the world moving towards a society of 

longevity, robots are expected to play an important role in medical care, welfare, 

services and work at home.  

Current research trends are devoted to the development of integrated systems 

relying on rich perceptual and motor capabilities, supporting crucial requisites such as 

safety, autonomy, mobility and efficiency when performing a wide variety of tasks in 

real-world environments. In particular, there is a considerable effort centred on the 

development of humanoid robots with human-like forms and movements (Adams et 

al., 2000; Atkeson et al., 2000; Bekey et al., 2008; Solis & Takanishi, 2010), but not 

necessarily with the ability to walk on two legs. Clearly, the field of humanoid robotics 

can be divided into two main categories: upper-bodies and whole-body robots. On the 

one hand, upper-body humanoid robots can be seen as the extension of industrial 

manipulators in the sense that they are fixed to a support base. The research focuses 
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mainly on the integration of intelligence and motor control for advanced manipulation 

tasks. The seminal work of Brooks (Brooks et al., 1999), within the Cog project, gave 

rise to an upper-body humanoid robot inspired by the biological and cognitive sciences 

to study human-like behaviours. Subsequently, many other projects with similar 

objectives have been initiated. On the other hand, whole-body humanoid robots have 

legs to move in real-world environments which pose additional challenging problems, 

namely in terms of balance and stability. In this context, among the missing key 

elements is the ability to develop control architectures that can deal with a rich 

repertoire of movements, variable speeds, constraints and, most importantly, 

uncertainty in the real-world environment in a fast and reactive manner.  

Biped locomotion is one of the most important and challenging control problems 

in humanoid robotics. Typical aspects that make the control of legged locomotion a 

challenging problem are the nonlinear, highly coupled, multivariable and unstable 

nature of its dynamics and also the complexity of models and even their absence for 

cases of mechanical imperfections which may not be modelled. Likewise, there are 

inherent characteristics of biped locomotion playing a key role in control, namely the 

absence of fixed points in the inertial frame, the unilateral degree-of-freedom 

established between the foot and the ground, the discrete changes in the dynamics as 

the system switches between single and double-support phases and the subjective 

performance evaluation. Given the complexity of the problem, there is an increasing 

need to move away from robots that are pre-programmed explicitly towards those 

endowed with the ability to extract information from the environment, learn about it 

and, hypothetically, develop predictions. Seen from another perspective, biped robots 

require not just predetermined plans for a single execution path, but instead, policies 

describing online response under varying conditions. 

This thesis is dedicated to the problem of biped locomotion in humanoid robots, 

giving rise to the following question: which are the strong reasons to pursue this 

research area? Among others, the following main reasons can be invoked: first, the 

surprising number of new humanoid robots appearing on the specialized literature (an 

overview is provided in Chapter 2) proves that they can have flexible mobility at a 

practical level. Second, the world of our everyday activities is largely designed for biped 
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locomotion. While a humanoid form is not necessarily the optimal one for every task, 

robots that are prepared to function in human environments tend naturally to have 

similar physical characteristics. Third, humanoids may prove to be the ideal robot 

design from the viewpoint of the human-robot interaction (i.e., more accepting), 

leading to further potential of application. However, in order to properly work in the 

environment of humans, this new generation of robots should have a human-like 

behaviour in terms of motion skills, as well as advanced adaptation, learning and 

communication capabilities. Fourth, humanoid robotics research is, consensually, 

considered as a key area for promoting the adoption of biological principles in the 

design and development of autonomous robots. Creating robots inspired by biological 

principles may help share and refine the understanding of their own natural 

capabilities, providing an excellent test-bed for hypothesis and biological models.  

In the past years, the main efforts in biped humanoid robots were aimed at 

addressing the various aspects of robot control, namely motion, contacts, constraints 

and obstacles. In order to pursue this line of research, significant efforts have been 

conducted through a close and systematic collaboration of multidisciplinary research 

teams whose knowledge encompasses a wide range of crucial areas, including 

electronics, mechanical, computer engineering, biomechanics and computational 

intelligence. While much progress has been made, numerous problems still remain in 

building human-like robots able to mimic the action, perception and cognition abilities 

of their biological counterparts. In this context, nature has always been a source of 

inspiration for the robotics community in terms of morphologies, modes of 

locomotion and/or control mechanisms. Biological systems provide working examples 

and conceptual proofs that strongly benefit the design of autonomous robots exhibiting 

efficiency, adaptability, robustness and versatility.  

1.1 Motivation and Objectives 

Humans excel in terms of learning and adaptation of locomotion patterns to 

accommodate the demands of a complex world. The continuous modulations of the 

coordination dynamics within and between legs are accomplished effortlessly such that 



4  Introduction 
 

 
 

humans tend to underestimate their own capabilities. Indeed, the strength of human 

locomotion lies in the integrated capabilities for encoding, storing and accessing 

information about the world, developing and adapting internal models, learning from 

multiple sources using different mechanisms, predicting and anticipating in both space 

and time, among others.  

Humanoid robots already have sophisticated control architectures and 

computational power for processing and reasoning. The Humanoid Project at the 

University of Aveiro (PHUA) represents a long-term multidisciplinary research effort 

whose main objective is the development of highly integrated humanoid platforms 

based on standard components and open software (Santos & Silva, 2006; Silva & Santos, 

2007; Santos et al., 2012). Fig. 1.1 illustrates the latest full-body humanoid platform 

with a total of 25 active degrees-of-freedom (DoF), about 65 cm height and 6 kg weight.  

 

Fig. 1.1: Front, side and back views of the PHUA robot with 25-DoF, 65 cm 
height and 6 kg weight .  

The PhD thesis was developed in the scope of current studies in multisensory 

perception, biped locomotion, autonomous navigation and learning methods. In 

particular, this work focuses on learning to imitate human locomotion actions through 

low-level motion trajectories encoded with motion primitives and on generalizing 

them to new and, often, unexpected circumstances. The main interest lies in learning 
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from a single-demonstration that can be modulated to varying situations, taking into 

account the dynamics of the robot and its environment. The first objective of this work 

is to encode human demonstrations and model locomotion tasks. This implies to 

extract motion primitives from human demonstrations by solving the so-called motion 

retargeting problem, dealing with mapping actions from a demonstrator to an imitator. 

In general, it is difficult to directly use captured motion data because the kinematics 

and dynamics of humanoid robots differ significantly from those of humans.  

Transferring motion skills from humans to robots is not limited to the simple 

reproduction, but requires the evaluation of their ability to adapt to new situations, as 

well as to deal with unexpected disturbances. Therefore, the second central objective is 

to develop and evaluate a control framework for action shaping and automatization. 

The idea behind the approach is to address the problem of generalization from a single-

demonstration by combining two basic structures. The first structure is a pattern 

generator system consisting of movement primitives learned and modelled by 

dynamical systems (DS). This encoding approach possesses desirable properties that 

make them well-suited for trajectory generation, namely the possibility to change 

parameters online such as the amplitude and the frequency of the limit cycle and the 

intrinsic robustness against small perturbations. The second structure, which is 

embedded in the previous one, consists of coupled phase oscillators that organize 

actions into functional coordinated units. The changing contact conditions plus the 

associated impacts with the ground lead to models with multiple phases. Instead of 

forcing the robot’s motion into a predefined fixed timing, the proposed pattern 

generator explores transition between phases that emerge from the interaction of the 

robot system with the environment, for example, triggered by sensor-driven events. 

At any of the deployment phases, the applicability of the proposed concepts is 

demonstrated by numerical simulations performed in V-REP, Virtual Robot 

Experimentation Platform (Rohmer et al., 2013). Several experiments are conducted in 

order to validate the methods and to assess the performance of the humanoid robot. 
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1.2 Main Assumptions 

For the purpose of pursuing the main goals of the work, two deployment phases will 

be considered. The strategy that will be used is, firstly, to learn the locomotion task in 

an offline phase after transferring the demonstrated data to the humanoid robot by 

adding balance constraints. The biped locomotion task is difficult to learn from 

multiple demonstrations, because of the high variability of the task execution, even 

when the same subject provides the demonstrations. Therefore, this work addresses 

the important concept of generalization from a single “average” demonstration, 

focusing on steady-state walking on flat ground surfaces. In order to comply with a 

dynamic environment, the demonstration example is encoded by combining both 

discrete and rhythmic Dynamic Movement Primitives (DMP), as proposed by Ijspeert 

(Ijspeert et al., 2002a; Ijspeert et al., 2013) and Schaal (Schaal et al., 2003).  

When applied to biped locomotion, DMP are, typically, learned in joint space, as 

reported by Nakanishi (Nakanishi et al., 2004a) and Morimoto (Morimoto et al., 2008). 

However, exploring the generalization and adaptation of learned primitives by 

modulation of their control parameters becomes difficult when the demonstrated 

trajectories are available in the joint space. This occurs because a change in the 

primitive’s parameters does not correspond to a meaningful effect on the current 

behaviour. Unlike the above mentioned works, the use of DMPs learned in task-space 

has been applied by Pastor (Pastor et al., 2009) and Ude (Ude et al., 2010), but limited 

to the specific domain of robot manipulation. The main difficulty may arise in multi-

body systems with a large number of DoFs since calculating the inverse kinematics is 

required. Supported by the development of efficient algorithms for whole-body 

coordination (Choi et al., 2007) as well as advances in designing robots that can learn 

such kinematic models by themselves (Hoffmann et al., 2009), the solution adopted 

here is based on DMPs learned in task-space and directly relate their parameters to task 

variables, such as step length, hip height, foot clearance and forward velocity.  

In a second phase, such low-level representation of movement trajectories will be 

used by the robot online, in autonomous manner, accommodating novel constraints 

and goals by adjusting a few open parameters of the learned model. This will generate 
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new movements which fulfil task-specific features, while maintaining the overall style 

of the demonstration. Therefore, this work assumes the existence of a reliable vision 

system that contributes for planning locomotion movements towards adaptive 

behaviour. Vision will support important behaviours such as gait cycle modulation, 

navigation and obstacle avoidance. For example, when stepping over an obstacle, the 

vision system will provide accurate information about the properties of the obstacle 

and surrounding environment that can be used to pre-plan subtle gait adjustments 

guiding the foot placement.  

1.3 Original Contributions 

This thesis contributes with a particular view into the problem of adaptive locomotion 

from a single-demonstration by addressing some aspects that, in the specific context of 

biped robots, have not received much attention before. The main contributions of this 

work are the following:  

• The human demonstrations are extracted from “robot-like” walking gaits on a 

flat surface. A “robot-like” walking gait means that the human stance foot will 

be constrained to remain in flat contact with the ground, forcing the “bent-knee” 

at all times in contrast with the typical straight-legged style. Two advantages can 

be envisioned: first, less effort should be required for transferring the kinematic 

data from the human to the robot. Second, it allows extracting directly the time 

course of the centre-of-pressure (CoP) that may be used for balance purposes. 

• Most existing works concentrate on frameworks able to select movement 

primitives from a library based on the current task context. Instead, this work 

addresses the important concept of generalization from a single demonstration. 

Given the stringent balance constraints specific to biped locomotion tasks, the 

generalization to new situations gains a particular interest. This is not a big 

departure from the existing literature, but rather a refocusing of the attention to 

the specific application of biped locomotion. 

• The DMP formulation is extended and refined in this thesis at different levels. 

The first extension occurs by including coupling terms among the x-, y- and z-
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coordinates of the DMP defined in task-space. Second, rhythmic DMP to 

generate rhythmic locomotion are combined with discrete DMP to adapt the 

motion primitives to a constantly changing goal (e.g., precise foot placement). 

The transition process is autonomously adapted based on visual feedback. Third, 

it is demonstrated how the DMP formulation can be incorporated to existing 

balancing algorithms based on the zero moment point (ZMP) criterion. 

• A clear separation is assumed from the classical control that forces the robot’s 

motion to follow a predefined fixed timing (time-based) into a more event-based 

control. The changing contact conditions, plus the associated impacts with the 

ground, lead to models with multiple phases. Instead of forcing the robot’s 

motion into a predefined fixed timing, the proposed pattern generator explores 

transition between phases that emerge from the interaction of the robot system 

with the environment, for example, triggered by sensor-driver events. 

1.4 Document Structure 

Although the chapters in this thesis are partially built upon results of the preceding 

chapters, most of them can be read independently. A description of the structure of 

the thesis follows below:  

Chapter 2 reviews different aspects of human and biped robot locomotion. First, an 

overview over the human locomotion biological aspects is done including an analysis 

of the most relevant terms of human anatomy. To conclude the human locomotion 

discussion, an overview of the two main model theories about the human locomotion 

is presented. Then an overview across the evolution and research done in biped 

locomotion is discussed. The chapter ends with an overview of the two most common 

methodologies that have been used by researchers in control of biped robots 

locomotion. 

Chapter 3 provides a survey on the main techniques used to learning and optimizing 

applied to robotics, including learning from demonstrations and reinforcement 

learning. The survey provides an overview of techniques and applications, but with 

particular focus on the specific challenges of biped locomotion. 
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Chapter 4 discusses the neurophysiological evidences of movement pattern 

primitives that have been found to be present in many animals and, with a great 

possibility, in humans. Based on this concept, a methodology known as Dynamic 

Movement Primitives (DMP) is implemented and evaluated for motion representation 

based on demonstrations from a human teacher. In particular, the study focuses on the 

properties of discrete and rhythmic movement primitives from the viewpoint of 

adaptation and generalization. 

Chapter 5 presents one of the contributions of this work, by presenting a 

locomotion mode called as “robot-like” walking mode and used in several motion 

capture experiments. First, some concepts related to the human gait cycle are 

presented. Then, a brief description of the motion capture system and the experiments 

performed are given. The remainder of the chapter compares the normal human gait 

with the “robot-like” gait, both in terms of kinematics and dynamics data acquired 

with a VICON system and a force platform, respectively.  

Chapter 6 discusses the methodologies used to transfer the single-demonstration as 

described in Chapter 5 to the humanoid robot. It is assumed an offline phase during 

which the skill transfer relies on (i) spatiotemporal scaling such that human and robot 

scale uniformly in all dimensions and, thereby, maintain their proportions, (ii) the 

application of a reduced model such that the dynamics of a humanoid robot are 

projected at its CoM and (iii) an algorithm that influences only a small number of 

variables that are sufficient for the core task (i.e., motion of the lower-limbs), leaving 

the rest of the degrees-of-freedom free to accomplish additional tasks (i.e., balance 

maintenance based on the ZMP criterion). 

Chapter 7 presents the control framework developed to address the problem of 

generalization from a single-demonstration by combining two basic structures. The 

first structure is the pattern generator system consisting of discrete and rhythmic 

movement primitives as described in Chapter 4. The second structure consists of 

coupled phase oscillators that organize actions into coordinated units. This framework 

provides the possibility to generalize and create adaptive behaviour to different 

situations in real world environments. Several simulations are performed to assess the 

validity of the proposed concepts. 
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Chapter 8 concludes the thesis with a discussion on the results achieved and with a 

reflection on the future work. 
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Chapter 2  

Biped Locomotion in Humans and Robots 

The development of humanoid systems that are able to approximate the motion skills, 

level of safety, energy efficiency and power autonomy of the human being has been 

the inspiration of the robotic community for many years. Despite of the growing 

number of humanoid systems, there is still a significant gap between the current 

physical capacities and performances of the most advanced humanoid robots and 

humans. In order to adopt control concepts found in nature, it is well worth 

understanding the mechanisms that make normal walking in humans such an efficient 

form of two-legged locomotion. This chapter will review the nature of the human 

walking cycle, the associated anatomical characteristics and some basic biological 

control mechanisms. Then, the major challenges related with the design and the 

control of bipedal robots is emphasized. Finally, this chapter reviews some of the 

planning and control approaches found in the literature for developing biped walking 

humanoids.  

2.1 Biological Aspects of Human Locomotion 

Human locomotion is the result of a complex coupling between the neural and body 

dynamics. Accordingly, the understanding of many fundamental aspects of locomotion 

control implies the investigation of the neural circuits involved, as well as the body it 

controls. It is possible to decompose the general organization of the human locomotion 

into a simple cascade, namely brain activates muscles, muscles move skeleton and 
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skeleton performs work on external world. However, such a unidirectional framework 

fails to incorporate essential dynamic properties that emerge from feedback operating 

among and within levels. One key challenge in the current study of locomotion is to 

determine how each individual component within a locomotor system is implemented, 

while at the same time gaining insight on how they interplay and function collectively 

as an integrated whole. 

2.1.1 The Human Control Loop 

The problem of motor coordination of complex multi-joint movements has been 

recognized as very difficult to understand in biological, as well as to synthesize in 

artificial systems. The high degree of redundancy of such movements and the 

complexity of their dynamics make it difficult to achieve a robust solution. However, 

biological systems are able to move with remarkable elegance while interacting with 

the terrain in a highly energy-efficient way during walking or running. In particular, 

human walking is a prominent example of how to generate smooth motion by the 

interplay of appropriate biomechanics and adaptive neural control. It has been 

suggested that the coordination of this complex process involves a hierarchical 

organization of levels. Recently, theories of motor hierarchies have become more 

specific and have been applied to all levels of the motor system (Wolpert & Kawato, 

1998; Arbib et al., 2000; Hamilton & Wolpert, 2002). 

The majority of these theories recognize four levels in the vertebrate motor system 

hierarchy: the spinal cord, the brain stem, the motor cortex, and the association cortex. 

It also contains two side loops: the basal ganglia and the cerebellum, which interact 

with the hierarchy through connections with the thalamus. The higher-order areas 

concern with more global tasks regarding action, such as deciding when to act, devising 

an appropriate sequence of actions, and coordinating the activity of many limbs. They 

do not have to program the exact force and velocity of individual muscles, or 

coordinate movements with changes in posture. These low-level tasks are performed 

by the lower levels of the hierarchy. At the same time, the lower levels (e.g., 

interactions between muscles and the spinal cord) are largely autonomous, while the 

higher level control (e.g., cortical) arises only point wise as needed. This distributed and 
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hierarchical organization requires a control architecture formed by several nested 

sensori–motor loops combining rapid preflexes with multimodal sensory feedback and 

feedforward motor patterns. Additionally, the cycle period available to coordinate all 

these loops can be rather short, namely at a maximal walking speed. In humans, the 

slow feedback is compensated by a powerful brain function: prediction. The 

neurological basis of prediction is not yet well understood, even though there is an 

important body of evidence suggesting that prediction plays a fundamental role in 

many processes, such as learning, behaviour, motor control, perception (multi and 

cross-modal perception), among others. Fig. 2.1 depicts a simplified control loop 

relating cerebral motor cortex and cerebellum in supervising the spinal cord 

controlling the musculoskeletal system. 
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Fig. 2.1: Simplified human control loop relating motor cortex and cerebellum 
in supervising the spinal cord that controls the musculoskeletal system. The 
distributed organization combines rapid mechanical preflexes with 
multimodal sensory feedback and feedforward motor patterns. 

Locomotion is initiated and modulated by supraspinal descending pathways. Some 

of these are direct pathways between the motor cortex and the spinal cord, such as the 

pathway from the vestibular nuclei and the cerebellum to the spinal neurons, and the 

corticospinal tracts that play an important role in visuomotor coordination, namely 

the accurate foot placement in uneven terrains. The postural problem involves an 

important role of the cerebellum for behaviourally successful locomotion, while the 

corticospinal pathway plays a role for the visually-guided modification of the 

locomotion cycle. Instead, other pathways are relayed by the centres in the brainstem, 

such as the reticularspinal tract that integrates information from the motor system to 

coordinate automatic movements of locomotion and posture, facilitating and 

inhibiting voluntary movement. Feedforward pathways are driven by specialized 
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circuits distributed throughout the spinal cord, called central pattern generators 

(CPGs).  

CPGs generate the rhythmic oscillations that drive motor neurons of limb and body 

muscles in animals as diverse as lampreys, birds, insects, cats, and rats (Orlovski et al., 

1999). Although CPGs may not require sensory feedback for their basic oscillatory 

behaviour, such feedback is essential for shaping and coordinating the neural activity 

with the actual mechanical movements. Sensory feedback is especially important in 

animals with upright posture, because the limbs play an important role in supporting 

the body in addition to locomotion.  

A recent study have not only confirmed the presence of the CPG for human 

locomotion, but also confirmed its robustness and adaptability to different gait patterns 

and different walking contexts (Choi & Bastian, 2007). The distributed and cooperative 

nature of the feedback is what makes locomotion behaviours so robust in uncertain 

environments. Studied from a general perspective, motor output is constantly modified 

by both mechanical and neural feedback (Gandevia & Burke, 1994): 

• Locomotor appendages and body segments not only exert forces on the external 

world, but also sense the forces they exert. The main sensory feedback to the 

CPGs is provided by sensory receptors in joints and muscles. A set of 

neurosensory devices measure the magnitudes and dynamics of force and length 

changes in the musculoskeletal system throughout each cycle of locomotion. In 

addition, viscoelastic behaviour of the musculoskeletal system itself provides a 

form of non-neural feedback that can operate almost without delay. Such 

viscoelastic behaviour produces responses to disturbances before the fastest 

neural reflexes. This preflexive mechanical feedback provides an additional 

component that functions in parallel with reflexive neural feedback and 

feedforward control from motor circuits to coordinate neural activity with 

mechanical activity;  

• Neural feedback from sensors during locomotion takes three general forms. 

First, the input from directional sensors such as eyes, ears, and noses influences 

the overall speed and direction of locomotion, guiding toward a specific 

destination or avoiding obstacles. Second, specialized equilibrium organs, such 
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as the inner ears, function to maintain specified body orientation during 

locomotion. Third, rapid feedback from mechanosensory cells, can tune cyclic 

motor patterns on a cycle-by-cycle basis, either by modulating cells within CPGs 

or by activating motor circuits that operate in parallel with pattern generating 

networks. The muscles and tendons of vertebrates are replete with diverse arrays 

of mechanoreceptors that monitor body kinematics and force production during 

locomotion. By integrating information across an array of sensors, a rich source 

of information is available for tuning motor output to changes of the internal 

and external environment within or between locomotor cycles.  

 

Sensory feedback reflexes and mechanical preflexes are complimentary pathways 

that provide feedback from the environment. Rapid feedback from both neuronal and 

mechanical pathways is integrated with guidance from eyes, ears, noses, and 

equilibrium organs to direct an animal toward a desired locale or stabilize it in the face 

of an environmental perturbation. Current studies of motor control address the 

dynamic coupling among CPGs, sensory feedback, mechanical preflexes and the 

environment. Such integration may provide a global view of motor control and will 

likely redefine the roles of the individual components.  

2.1.2 Normal Human Locomotion 

Over the past decades, the advances in the area of gait science have produced a precise 

description of normal human locomotion. This includes an array of terms and concepts 

related to gait analysis, phases of walking connected to kinematic or kinetic events, 

basic principles of normal walking and the postural control function based on reflexes 

and supra-spinal high-level actions from the motor cortex. This section presents 

selected work related to these topics. 

Basic Anatomical Terms 

The anatomical terms describe the relations between different parts of the body and 

they are based on what is called the anatomical position, shown in Fig. 2.2. In this 

position, the subject is standing upright, with the arms by the sides of the body, the 
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palms forward and the feet together. Relative to the centre of the body, six terms are 

used to describe the directions as follows: 

• Superior or cranial – toward the head end of the body; 

• Inferior or caudal – away from the head; 

• Anterior or ventral – front side of the body; 

• Posterior or dorsal – back side of the body; 

• Left and right – they refer of course to the left and right side of the body. 

 

Fig. 2.2: The anatomical position, showing the three reference planes and the 
six fundamental directions (from Whittle, 2007a). 

Three planes are defined as follows: 

• Sagittal or lateral plane – a vertical plane running from the back to the front 

and divides the whole body into the left and right sides; 
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• Frontal or coronal plane – a vertical plane that divides the body into the front 

(anterior) and back (posterior) sections; 

• Transverse or axial plane – a horizontal plane that divides the body into the 

upper and lower parts. 

 

Most of the joints present on the human body can only move in one or two of these 

three planes. The directions of these motions for the hip, knee, ankle, foot and toes 

can be seen in Fig. 2.3. Although there’s not a single designation, they are commonly 

designed as: 

• Flexion and extension – are the movements that are performed in the sagittal 

plane; 

• Abduction and adduction – these movements are performed on the frontal 

plane; 

• Internal and external rotation – they take place on the transverse plane. 

 

Fig. 2.3: Movements performed on the hip, knee, ankle, foot and toes joints 
(from Whittle, 2007b). 
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Morphological Adaptations in the Musculoskeletal System 

The human musculoskeletal system presents a combination of complex anatomical 

characteristics to cope with the dynamics of balancing an upright trunk, while 

efficiently moving the body forward. As far as the muscles is concerned, current 

evidence points to the variety of functions in locomotion where muscles serves as 

motors, brakes, stiffness regulators and stores of energy. During locomotion, the 

amplitudes, frequencies and phases of the signals sent to the multiple muscles must be 

well coordinated, with many muscles per joint and several muscles acting on more than 

one joint. This coordination extends from the different joints and limbs to the 

antagonist muscles which combine periods of co-activation for modulating the joint’s 

stiffness with periods of alternation for actuating the joint. This human 

musculoskeletal system’s ability to control force and position simultaneously is the key 

to versatile interaction with our surroundings.  

There were also interesting morphological adaptations in the human skeleton, 

found within the pelvis and lower limbs, that make it able to cope with the dynamics 

of balancing an upright trunk, while efficiently moving the body forward, as described 

in Lewin (Lewin, 2004) and Harcourt-Smith (Harcourt-Smith, 2007): 

• The human pelvis has particular features that greatly facilitate support of the 

upright trunk. First, it places the trunk’s centre of gravity closer to the hip joint. 

Second, the contraction of the gluteus muscles, positioned at the side of the 

pelvis, tilt the trunk toward the leg in contact with the ground, providing greater 

balance and stability. 

• Humans have an inward sloping angle of the thigh (valgus knee angle) resulting 

in the knee being placed closer to the midline of the body than the femoral head 

articulated to the pelvis. This greatly reduces the lateral movements of the 

body’s centre of gravity, leading to a more efficient and energy saving walking. 

• The human knee has the ability to “lock” when full extended during the stance 

phase which greatly facilitates upright walking by keeping the leg straight and 

enabling the efficient transfer of weight between legs during the double-support 

phase.  
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• The talar articular surface of tibia is oriented perpendicular to the long axis of 

the bone, allowing a more efficient weight-transfer through to the foot.  

• The shape of the human foot is particularly specialized for the requirements of 

biped locomotion with its arches. The combination of short and straight toes 

with a relatively long tarsus results in a more efficient propulsion lever during 

the stance phase. Second, the longitudinal arching combined with the locking 

morphology of the calcaneo-cuboid joint allows acting either as an efficient 

shock absorber or a rigid structure during weight-transfer to the ground. 

 

Away from the adaptations of the pelvis and the lower limbs, the curves of the spinal 

column are also particularly relevant. Humans use less muscular effort to stand/walk 

upright and support more weight with a curved spine than if it were straight (curves 

increase resistance to axial compression). Most of the aforementioned characteristics of 

biped locomotion relate to two major factors: balancing the body as a whole and 

keeping the downward transmission of force as close to the midline of the body as 

possible. The minimization of the mediolateral swaying of the body during walking 

acts to stabilize the body over the supporting leg and to reduce energy expenditure.  

Divisions of the Gait Cycle 

The gait cycle is defined as the period of time between any two identical events in the 

walking cycle. Although any event can be selected as the onset of the gait cycle, initial 

contact of one foot is normally used as the starting event. The human walking cycle is 

characterized by two distinct phases: the stance phase, when the foot is in contact with 

the ground, and the swing phase, when it is off the ground in forward motion. The 

stance phase begins with heel strike as the foot hits the ground. The knee is fully 

extended and the foot dorsiflexion makes the heel strike the ground before the rest of 

the foot. Then, the plantar flexion occurs and, typically, force is transmitted to the 

ground along its lateral border. The point when the body is directly over the weight-

bearing foot is known as the midstance phase.  

The body then carries its forward momentum over the leg, at which point force 

moves medially to the ball of the foot (where the toes join with the rest of the foot). 
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At this point, strong muscular contraction of the plantar-flexors results in the ball of 

the foot pushing against the ground and, eventually, lifting away from it as the body 

continues to move forward. This action finishes with a final push-off of the big toe 

known as toe-off. The leg is now off the ground and in the swing phase, with the knee 

and hip both bent so as to keep the leg off the ground as it swings forward to make the 

next heel-strike. 

On the one hand, double-support is the period of time when both feet are on the 

ground, occurring twice in the gait cycle at the beginning and end of stance phase. 

Generally, in normal walking, the two periods of double-limb support represent 25 

percent of the gait cycle, decreasing the value as velocity increases. On the other hand, 

single-support is the period of time when only one foot is in contact with the ground 

(equal to the swing phase of the other limb). A complete description of the functional 

tasks and phases of gait is provided in Section 5.1.  

2.1.3 Control Mechanisms of Biped Walking 

The distinctive feature of human locomotion, compared with other bipedal animals, is 

the well recognizable straight-legged style: humans walk while keeping the legs almost 

straight (Alexander, 1992). At its most fundamental level, human locomotion appears 

to be a simple process: by applying forces on the external environment and, through 

the Newton’s law, reaction forces are generated which move the body forward in the 

opposite direction. The spatiotemporal dynamics of locomotion are complicated, but 

understandable on the basis of a few common principles, including mechanisms of 

energy exchange and the use of force for propulsion, stability and manoeuvrability. 

There are essentially two major theories in human walking that have dominated over 

the last five decades: the inverted pendulum analogy and the six determinants of gait. 

In the following, these two complementary theories are discussed.  

Inverted Pendulum Analogy 

Two basic mechanisms have been proposed to explain the different patterns of time-

variant forces measured during walking and running (Alexander & Vernon, 1975; 

Cavagna & Kaneko, 1977). When walking, the human body’s centre of mass (CoM) 
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travels up and down during each step, reaching its lowest point when both feet are on 

the ground and rising to its highest point while it jumps over a straight supporting leg 

(Fig. 2.4). This vertical CoM movement enables humans to save energy through a 

pendulum-like mechanism, where the kinetic and gravitational potential energies are 

exchanged cyclically. While humans CoM moves up they slow down and when it 

moves down they speed up, thus passively converting gravitational potential energy to 

forward kinetic energy and back again. Kinetic energy in the first half of the stance 

phase is transformed into gravitational potential energy, which is partially recovered 

as the body falls forward and downward in the second half of the stance phase.  

inverted pendulum model
� walking

spring-mass model
� running  

Fig. 2.4: Two basic models for legged locomotion: in walking (left), the centre 
of mass travels over a rigid leg, analogously to an inverted pendulum. In 
running (right), the leg acts as a spring, compressing during the braking phase 
and recoiling during the propulsive phase. 

This pendulum-like mode of walking, which is a consequence of the straightness of 

our legs, reduces the mechanical work that our muscles must supply to raise and 

accelerate the CoM. On the other hand, while walking straight, the line of action of 

our body’s weight passes close to the leg joints, and little tension is needed in the 

muscles to prevent the joints from collapsing under the load. Hence, another possibly 

more important consequence of our straight-legged style of walking is that it enables 

us to support our weight without the need for large forces in our leg muscles, thereby 

reducing the effective energy cost. In order to travel faster, humans change to a running 

gait that is similar to bouncing on a pogo stick (Fig. 2.4). Like a simple spring-mass 

system, the kinetic and gravitational potential energies are temporarily stored as elastic 

energy in muscles, tendons, and ligaments during the braking phase (as a leg strikes the 

ground), being nearly all recovered during the propulsive second half of the stance 
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phase. Remarkably, these basic mechanisms of energy conservation have been 

demonstrated in a wide variety of animals that differ in leg number, posture, body 

shape, body mass, or skeleton type, including humans, kangaroos, dogs, lizards, crabs, 

and cockroaches. The inverted pendulum model is a simple model for human walking 

and a study of its weakness and strengths can be found in a work of McGrath et al. 

(McGrath et al., 2015). More recently other extensions of the inverted pendulum have 

been proposed that include springers, telescopic actuators, dampers and additional 

joints and segments (Srinivasan, 2011; Pratt et al., 2012; Hong et al., 2013; Kim & Park, 

2011). 

Time-variant forces and energy exchange in the lateral direction (non-propulsive) 

could be equally important. Lateral forces may enhance both the passive stability and 

active manoeuvrability of locomotion, or other criteria that become apparent in 

natural environments. By pushing laterally, legs create a more robust gait that can be 

passively self-stabilizing as the animal changes speed or moves over uneven terrains 

(Kubow & Full, 1999). Forces generated orthogonal to the direction of motion may 

also contribute to the overall stability of locomotion, because the movement of animals 

and the natural environments through which they must navigate are complex and 

variable. Forces lateral to the direction of movement are often larger than one might 

expect for efficient locomotion, but they may enhance stability, and their modulation 

seems essential for active manoeuvres. 

Determinants of Gait 

Several studies have pointed out to other characteristics of the human gait, referring 

namely to optimizations performed during the gait cycle to minimize the excursions 

of the center of gravity and the energy expenditure. These optimizations, often called 

the “determinants of gait” were first presented by Saunders et al. (SAUNDERS et al., 

1953). These determinants of gait have been accepted for a long time (about 40 years) 

as important to the reduction of energy expenditure. Only later (Della Croce et al., 

2001; Gard & Childress, 1996) it was suggested that even though they exist, they play 

little or even no part in reducing energy expenditure, while Kerrigan (Kerrigan, 2003) 

suggested that only one of the determinants (the fifth) significantly reduces the vertical 
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excursion of the centre of mass and Baker (Baker et al., 2004) rejected the notion that 

energy is conserved by restricting the vertical movements and proposed that energy is 

mainly conserved by an exchange between potential and kinetic energy. Nevertheless, 

since these determinants are present in the human gait, a list of those determinants is 

provided: 

• Pelvic Rotation: increases step length; increases radius for the arcs of the hip 

thus smoothing the arcuate trajectories of the CoM; helps regulate angular 

momentum in vertical direction. 

 

Fig. 2.5: Schematic figure used to illustrate the pelvic rotation (from Medved, 
2000). 

•  Pelvic tilt: augment knee extension and Achilles tendon energy storage; helps 

regulate angular momentum in anterior-posterior direction. 

 

Fig. 2.6: Schematic figure used to illustrate the pelvic tilt (from Medved, 
2000). 
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• Knee flexion (early support phase): shock absorption; helps regulate angular 

momentum in medio-lateral direction. 

 

Fig. 2.7: Double-pendulum model in the sagittal plane used to illustrate the 
contribution of knee flexion to the vertical displacement of the CoM during 
stance (from Robinovitch, 2007). 

• Controlled plantarflexion: depresses ascending limb of arcuate trajectory; 

absorbs shock of forefoot collision; helps regulate angular momentum in medio-

lateral direction. 

 

Fig. 2.8: Anatomical diagram of foot used to illustrate controlled 
plantarflexion during early stance (from Robinovitch, 2007). 

• Powered plantar flexion: elevates descending limb; helps regulate angular 

momentum in mediolateral direction; decreases impact of adjacent leg. 

 

Fig. 2.9: Anatomical diagram of foot used to illustrate powered plantarflexion 
during late stance (from Robinovitch, 2007). 
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• Lateral displacement of the pelvis: with respect to a sagittal plane, the knees 

are medial to the hips; the effect of adducted posture of lower extremities is the 

reduction of total lateral displacement (~4.5 cm). 

 

Fig. 2.10: Anatomical diagram of the lower-limbs used to illustrate lateral 
displacement of the pelvis(from Robinovitch, 2007). 

2.2 Biped Locomotion in Humanoid Robots 

The world has witnessed an impressive progress in legged robots during the last 

decades, from animal-like hopping robots and passive mechanisms to walking 

humanoid robots and small-size commercial platforms for research and entertainment. 

The continuous progress in robotics technology and the promoting activities of 

humanoid-robots soccer competitions, organized by RoboCup, FIRA and others, have 

strengthened the academic involvement. The next sections describe the common 

paradigms in robot design, examples of some prominent biped robots developed 

throughout the world and the inherent characteristics of biped locomotion that make 

its control an open challenging problem.  

2.2.1 Paradigms in Robot Design 

A retrospective analysis shows that there has long been a dichotomy in styles used in 

designing and implementing biped robots. On the one side, an increasing number of 

studies support the idea that the structure and mechanical characteristics of the robot 

body (i.e., morphology) play a crucial role in behaviour generation and control. The 

morphology determines the kinematics and dynamics of the robot, and thereby the 

possible repertoire of behaviours, as well as affects the control required for these 

behaviours. 

The relevance of this idea has become apparent with the pioneering work of Tad 

McGeer (McGeer, 1990) who built self-stabilizing passive mechanisms which could 
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dynamically walk with no sensing, actuation or feedback. This can be done by 

mechanical structures that execute the necessary step motions by using pendulum legs 

and passive interaction of gravity and inertia when, for example, walking down a slope. 

Although cannot be used as a complete walking algorithm for a humanoid robot, it is 

useful to combine elements of passive walking into the motion patterns thinking on 

the energy conservation that can be achieved with it.  

Since McGeer, many other researchers have been demonstrating how well-designed 

morphologies can lead to reduction in control requirements and improved efficiency 

(Anderson et al., 2005; Collins & Ruina, 2005; Hobbelen & Wisse, 2007). The recent 

trend of passive walking research is influenced by concepts such as control on level 

ground (actuation), more joints and links (e.g., upper-body with torso and arms, knees 

and ankles) and 3D stability focused on real-robot experiments. For important recent 

work refers to Wisse et al. (2007), Narukawa et al. (2008), Wang et al. (2009), Iida & 

Tedrake (2010).  

Despite dynamic walking robots can produce economical human-like gaits, they 

tend to have poor versatility (e.g., able to walk at various speeds on different terrains). 

As result, many articles about biped locomotion fall in on the other extreme of the 

spectrum: the full-active bipedal walking robots. From the viewpoint of robotics, 

numerous approaches for active biped locomotion control have been developed with 

their own solutions to the problems of pattern generation, postural control and 

coordination among DoFs. 

2.2.2 Examples of Actively Controlled Bipeds 

The world’s first full-scale anthropomorphic robot, WABOT-1, was built in 1973 at 

Waseda University (Kato et al., 1974). Since then, the history of biped walking 

humanoids research has attracted the attention of a growing community, both from 

the industry and the academia. The impressive designs and skills of Honda’s P2, P3 and 

ASIMO robots represent a landmark research work (Hirai et al., 1998; Sakagami et al., 

2002). The QRIO prototypes were targeted to develop robotics systems for 

entertainment by following up the success of AIBO robot (Nagasaka et al., 2004). 

Although this project is not being pursued, the robots’ natural motions when operating 
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in groups and when interacting with humans make their skills remarkably similar to 

human skills.  

The HRP project involves efforts from the industry and the academia focusing on 

the potential of real-world applications for humanoids (Akachi et al., 2005; Hirukawa 

et al., 2004; Kaneko et al., 2004). At the same time, several small-size valuable 

commercial platforms have also appeared suitable for research and education purposes, 

such as the HOAP robots developed by Fujitsu (Fujitsu, 2003), the NAO robot 

developed by Aldebaran Robotics (Gouaillier et al., 2009) and the DARwIn-OP open 

platform developed at Virginia Tech (Muecke et al., 2006).  

The involvement of several universities in long-term research programs was the key 

to breakthroughs and promoting innovative design and applications. The activities at 

the University of Tokyo with a number of humanoid robots (Nishiwaki et al., 2005), 

at the Waseda University with the WABIAN series robots (Ogura et al., 2006), the 

Johnnie designed by the TUM group in Germany (Lohmeier et al., 2004) and the KHR 

series robots from KAIST in Korea (Park et al., 2004; Park et al., 2007) are examples of 

humanoid robots focusing on biped locomotion research. At the same time, several 

easy-to-design humanoid platforms have been described in the literature, namely 

mechatronics details and technical solutions useful to others replicate (see, for example, 

Behnke & Stückler, 2008; Furuta et al., 2001; Kim et al., 2004; Santos & Silva, 2006; 

Yamasaki et al., 2001). Some of the most prominent representatives of actively 

controlled humanoid robots are shown in Fig. 2.11. 

More recently, evidence of how human brains generate the wide variety of human 

behaviours has been revealed by neuroscience and psychological studies. Despite the 

increased understating of the human brain mechanisms, the replication of similar 

mechanisms into artificial devices is slower. The RobotCub project (Sandini et al., 

2004; Tsagarakis et al., 2009) and the Computational Brain project (Cheng et al., 2007a, 

2007b) have focused on psychology and neuroscience research as a guide for cognition 

in developing, respectively, the child-like iCub and the human-sized CBi humanoid 

robots.  
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Fig. 2.11: Examples of humanoids robots developed throughout the world: 
WABOT-1, ASIMO and QRIO (top from left to right); HRP, HOAP and 
NAO (bottom from left to right). 

2.2.3 Inherent Characteristics of Biped Locomotion 

The control of bipedal walking is a challenging problem not currently solvable by 

classical control theory. Some of the characteristics that make it difficult are the 

nonlinear dynamics, the multivariable dynamics and the unstable nature of the 

dynamics (i.e., most biped robots will fall down without control). A bipedal walking 

robot is a multi-body system with a large number of degrees-of-freedom (typically 12 

of more joints in their lower limbs) possessing highly-coupled nonlinear dynamics. The 

mathematical model of the system is very complex and it is described by nonlinear 

high order differential equations. Thus, the tools for linear systems typically cannot be 

applied to bipeds, except in special cases. Several strategies can be used to solve these 

potential problems, such as to simplify the dynamical model, to ignore the effects of 

friction and flexibility and to minimize the impacts with the ground. 
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In addition to these properties, some inherent characteristics of biped walking play 

a key role in control, namely the limited foot/ground interaction, the discrete changes 

in the dynamics (time-varying dynamics) and the subjective performance evaluation. 

First, the absence of fixed points in the inertia frame makes the system under-actuated. 

The DoF established between the foot and the ground is unilateral and the moment 

applied around the foot must be limited to avoid the complete rotation around the heel 

or toes. Because the robot’s foot can only push on the ground (but not pull on it), 

control is limited and, in many circumstances, little can be done to prevent falling but 

to be caught by the next support foot. The absence of an actuator at the contact point 

requires the conversion from the internal forces generated by each joint actuator to the 

external reaction forces through the interaction with the environment. More 

concretely, the control of legged robots requires the manipulation of the contact point 

(or the point of action of the total external forces) and the force acting at that point. A 

property of human-like walking results from the high centre of gravity (CoG) with a 

small contact area to the ground. As result, balance maintenance is a central concern 

in order to engage useful tasks, from standing upright posture to motion goals. The 

most well-known stability measure to enhance trajectory-tracking controllers and to 

analyse their stability is the so-called ZMP-criterion proposed by Vukabrotovic and 

colleagues (Vukobratovic & Juricic, 1969; Vukobratović & Borovac, 2004).  

Second, there is a change on the system’s dynamics during the walking cycle as the 

system changes between single-support phase and double-support phase (i.e., the system 

is supported by one foot or by both). This is an advantage that allows biped robots to 

walk in environments not accessible to wheel-based mobile platforms, such as climbing 

stairs. However, the changing contact conditions at the feet plus impacts at heel strike, 

which cause jump in the velocities, lead to models with multiple phases. As result, 

bipedal robots have characteristics of both continuous and discrete systems, making 

control design and analysis more difficult. Third, successful walking results in 

transporting the body section from one point to another safely and efficiently, even 

though the exact trajectories are not strictly important. Performance is usually defined 

in terms of efficiency, locomotion smoothness, maximum speed and robustness in 

rough terrains rather than typical notions such as trajectory tracking and disturbance 
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rejection. Therefore, it is difficult to define a cost function as required by automatic 

control learning and synthesis techniques. The problems mentioned before contribute 

to difficult the development of a simple and robust control system for biped robots. 

Another recurrent problem in bipedal robots is how to design a controller that 

generates closed-loop motions, such as walking, running, or balancing, that are periodic 

and stable. Due to the complex dynamics associated with bipedal robots, the inherent 

under actuation and the changing contact conditions with the ground, the problem is 

far from being solved and there are just a few examples of algorithms developed using 

this approach. A good example is BIPER, a robot built by Miura and Shimoyama at 

Tokyo University (Miura & Shimoyama, 1984) that walked with straight legs. The 

small joint angle excursions were appropriate to linear control synthesis methods.  

Other linearization approaches are commonly adopted to reduce the nonlinear 

dynamics into a linear one and facilitating the application of linear multivariable 

control methods (Gubina et al., 1974; Golliday, C. & Hemami, 1977; Mita et al., 1984). 

In the same line of thought, RABBIT is a biped robot aimed at the fundamental 

research of modelling and control of a class of nonlinear, hybrid systems that arise in 

the study of legged locomotion (Chevallereau et al., 2003; Westervelt et al., 2007). New 

paradigms, concepts and algorithms have been explored to deal with the problem of 

truly dynamic walking (the robot has no feet). In this work, authors present a 

systematic approach for achieving asymptotically stable motions that includes topics 

from mathematical modelling of walking gaits to theoretical control analysis and 

feedback synthesis. 

2.3 Control Approaches in Biped Robots 

In this section, the most important control approaches used in developing bipedal 

robots are discussed. This is a vast and complex task which can only be fulfilled in a 

limited fashion given the growing community of researchers working in the field. 

However, it seems reasonable to include in this study model-based and model-free 

approaches, each with their own advantages and limitations.  
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2.3.1 ZMP Based Approaches  

Starting from the work of Vukobratovic and Juricic (Vukobratovic & Juricic, 1969), a 

considerable research effort has been dedicated to motion generation, stabilization and 

improvement using model-based approaches. The majority of the walking control 

systems (e.g., Honda humanoid robots) use modulated feedback of pre-programmed 

joint trajectories. The desired motions can be calculated in advance using some form 

of pattern generator formulation (e.g., parameterized curves, optimization of some 

metric) or capturing human motions by taking recordings (e.g., walking, climbing 

stairs, etc). Then, an accurate dynamic model is used to compute dynamically 

admissible joint trajectories offline. These planned trajectories are then played back 

during walking and modified online through feedback, according to a simple control 

law (ZMP-based), in order to maintain stability. The trajectory modulation can be done 

online, while the robot walks, by measuring the ground reaction forces and/or the 

body orientation, and by comparing with the predicted forces and orientations. 

The more advanced humanoid robots look extremely good when walking based on 

an important idea: using demonstrations of human walking. However, in general, the 

ZMP-criterion constrains the stance foot to remain in flat contact with the ground at 

all times and leaves less freedom for optimizing performance. As result, only slow 

motions can be achieved in a stable manner, while the walking gait is limited in terms 

of efficiency, natural appearance and disturbance handling (trajectories are rigidly 

tracked using typically high gain position servos). Furthermore, in spite of the 

remarkably human-like and convincing demonstrations, this approach places 

additional demands to allow locomotion across difficult terrains where no previous 

example is available. Fig. 2.12 illustrates the control problem if the ground reaction 

varies, as well as two common approaches used in practical robots to solve this 

question: ground reaction control and target ZMP control. 
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Fig. 2.12: Fundamental problem of stability in biped locomotion: (A) in flat 
surface the ZMP must by inside the supporting area and, typically, the 
ground reaction force and the total force acting at the CoM are colinear; (B) 
in irregular terrains the misalignment may lead to tip over; (C) the ground 
reaction control approach accommodates the ground reaction force by 
distributing the force between the heel and the toe so that the resultant force 
may pass through the ZMP; (D) the target ZMP control approach accelerates 
the upper torso to increase the inertial force so that the resultant force may 
pass through the ZMP. 

Besides their several drawbacks, considerable results have been achieved by using 

Zero-Moment Point (ZMP) considerations to ensure stability. Examples include joint 

control strategies (Sano & Furusho, 1990; Stephens, 2007), whole-body motion control 

(Choi et al., 2007; Kajita & Kanehiro, 2003; Sugihar et al., 2002a), optimal control 
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policies (Muico et al., 2009; Zhou & Meng, 2003), predictive control (Ibanez et al., 

2014) and reflex-based control (Huang & Nakamura, 2005). A more dynamic form of 

walking is now being attempted in humanoid robots that use the upper-body, or 

additional degrees-of-freedom, to control the vertical component of their centre of 

gravity. This form of walking is referred as “straight leg walking” and it is easily 

observable as the robot does not need to adopt the typical “crouched gait”. Two 

examples are the highly integrated humanoids WABIAN-2 (Ogura et al., 2006) and 

JOHNNIE (Pfeiffer, 2007) developed at Waseda University and Technical University 

of Munich, respectively. 

It should be noted, however, that other research groups use time-invariant control 

schemes based on heuristics, simple feedback rules and simple physical models. 

Examples include Timmy at Harvard (Dunn & Howe, 1996), Meltran at Tsukuba Lab 

(Kajita & Kobayashi, 1987) and the Spring-Flamingo developed at MIT Leg Lab (Pratt 

et al., 2001). Instead of pre-computing joint trajectories (time-dependent algorithms), 

simple feedback rules are used online to control the robots what, typically, improves 

the robustness against disturbances. The exploration of the specific characteristics of 

biped walking (or natural dynamics) is another key factor to closely relate the planning 

and motion control problem.  

2.3.2 Bio-inspired Central Pattern Generators 

Supported by neurophysiological evidences and robot models, an increasing number 

of researchers are adopting model-free approaches for the control of biped locomotion 

in humanoid robots. An example gaining an increased acceptance is the bioinspired 

approach based on the design of central pattern generators (CPGs). As stated in section 

2.1.1, central pattern generators are neural circuitry located in the spinal cord which 

can generate low level rhythmic patterns without sensory or central input. The phase 

relation among these oscillatory components must be well synchronized so as to 

generate an adequate locomotion pattern, such as the biped gait. In vertebrates, the 

locomotion system is organized such that the spinal CPGs are responsible for 

producing the basic rhythmic patterns, while the higher-level centres (i.e., motor 

cortex, cerebellum and basal ganglia) are responsible for modulating these patterns 
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according to environmental conditions. Sensory feedback plays also an important role 

in shaping the rhythm patterns, providing the opportunity to obtain entrainment 

between the CPG and the mechanical body. Grillner (Grillner, 1985) and Pearson 

(Pearson, 1993) have significant studies concerning the locomotion of vertebrates 

controlled by central pattern generators. Since the seminal work of Taga (Taga, 1995b, 

1995a), different CPG-models have been studied being capable of producing rich 

behaviours through modulation of their parameters. 

Properties of CPG Models 

As an alternative to methods based on pre-recorded reference trajectories (e.g., ZMP-

based) or heuristic control laws, CPG models present several interesting properties, 

such as the distributed control architecture, the ability to deal with redundancies and 

the fast control loops. These properties, when transferred to mathematical models, 

make CPGs useful build blocks for locomotion controllers in robots:  

• It reduces time delays in the motor control loop since rhythms are coordinated 

with mechanical movements using short feedback loops directly through the 

spinal cord.  

• It significantly reduces the dimensionality of the descending control signals and, 

as consequence, the necessary bandwidth between the higher level centres and 

the spinal cord. Indeed, the control signals do not need to specify muscle activity, 

but only modulate CPG activity.  

• The system rapidly returns to its normal rhythmic limit cycle behaviour after 

transient perturbations of the state variables, providing robustness against 

perturbations.  

• CPG models typically produce smooth modulations of the produced trajectories 

even when the control parameters are abruptly changed (the differential 

equations typically act as first or second order filters). This property is useful for 

doing online trajectory generation that avoids possible damage in motors and 

gearboxes due to abrupt changes of motor commands. 
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Therefore, a properly implemented CPG model reduces the dimensionality of the 

control problem such that higher level controllers (or learning algorithms) do not need 

to directly produce multidimensional motor commands, but only higher level control 

signals about task goals, desired direction of movement and speed. In this context, it 

seems clear that the CPG models should be more effective when used with distributed 

control implementations (i.e., the layered architecture mentioned previously), being 

interesting for modular robots.  

Three different types of CPG models are implemented in most robots, including 

connectionist models (Arena, 2000; Lu et al., 2005), vector maps (Okada et al., 2002) 

or systems of coupled oscillators (Matsuoka, 1985; Williamson, 1998; Kimura et al., 

1999; Crespi et al., 2006; Ijspeert et al., 2007). In a few cases, spiking neural network 

models have also been used (Lewis, 2002). All significant implementations involve a set 

of coupled differential equations that are numerically integrated and solved on a given 

processor. At the same time, several aspects must be taken in consideration when 

designing and implementing the CPG model, such as: (1) the general architecture of 

the CPG, including the type and number of oscillators or neurons. In a real robot, it 

also involves choosing between position control, where the outputs of the CPG are 

desired joint angles provided to a feedback controller, and torque control where the 

outputs directly control the torque produced by the motors; (2) the type and topology 

of couplings that determine the conditions for phase-coupling among oscillators; (3) 

the selection of the waveforms that determine which trajectories will be performed by 

each joint angle during a cycle; and (4) the influence of the input signals and of the 

feedback signals. Input signals will define how control parameters can modulate 

important quantities such as the frequency, amplitude, phase lags (e.g., for gait 

transition), or waveforms (e.g., for independently adjusting swing and stance phases). 

Feedback signals will define how feedback from the body will affect the activity of the 

CPG, for example, accelerating or decelerating it depending on environmental 

conditions. A major difficulty in designing CPGs is that the above design aspects are 

all strongly interconnected. 
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CPG Models for Biped Locomotion 

Most of the previous works centred on the application of CPG models for biped 

locomotion is limited to simulation studies. Only a few experimental applications can 

be found on the literature largely due to hardware limitations, difficulty in parameter 

tuning and large modelling errors between simulations and experiments. Thus, more 

than an exhaustive review of the literature, this subsection aims to provide a brief 

overview of the principal issues and proposed solutions with emphasis, whenever 

possible, to experimental applications with real robots. Interesting overviews of CPG-

controlled biped locomotion were provided by Ijspeert (Ijspeert, 2008) and, more 

recently, by Matos and Santos (Matos & Santos, 2014). 

Bay and Hemami (Bay & Hemami, 1987) co-authored the first article found on the 

IEEE explore database that relates the use of CPGs to biped locomotion control. Using 

a set of van der Pol oscillators, the authors constructed a CPG model that could be 

used to generate the angles for the lower limb over a single step walking cycle. By using 

computer simulations, they fit the parameters so that the oscillators generate the 

correct angles for a walk and jump test, and the reproduced values exhibited 

coordinated motions quite similar to human walking and jumping. It should be noticed 

that only the angles of the hips and knees were taken into account (i.e., the ankle joint 

was not considered). At the same time, undesired knees bends and unusually large 

angular displacements were found before the system reaches a steady state. Later, 

Miyakoshi et al. (1998) simulated a 3D model with 11-DoF and 8-links using three 

neural oscillators. The several simulations showed the possibility to achieve a stable 

biped motion even in the presence of perturbations.  

Tsuchiya and Aoi (Aoi et al., 2004a) proposed a locomotion control system based 

on nonlinear oscillators which generate the commanded trajectories of the joints as 

function of the phase oscillators and a low-level control system at the individual joints. 

The oscillators tune the oscillatory phases through mutual interactions and feedback 

signals from touch sensors. Using both simulations and a real robot, they showed that 

the proposed control system is able to produce adaptive walking patterns under 

environment change conditions by setting the locomotion period. Later, the same 
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authors added a turning control system that works by changing the duty ratios of the 

leg motion generators (Aoi et al., 2004b). Experimental results showed that the robot 

is able to successfully turn around corners using a CCD camera.  

Nakanishi (Nakanishi & Morimoto, 2004) proposed a framework for learning biped 

locomotion using dynamical movement primitives based on non-linear oscillators. 

Their ultimate goal was to establish control design principles in order to achieve 

natural human-like locomotion. In this article, the trajectories are learned from 

demonstrations based on data captured from a human walking, while the frequencies 

of the learned trajectories are adjusted automatically by an adaptation algorithm based 

on phase resetting and entrainment of the coupled oscillators. The role of phase 

resetting in terms of biped walking robustness both against external perturbations and 

environmental changes was tested in the same paper. Numerical and experimental 

results demonstrated the effectiveness of the proposed control algorithm and the 

frequency adaptation algorithm. 

Matsubara (Matsubara et al., 2005b) addressed the problem related with sensory 

feedback and they proposed an efficient learning framework for CPG-based biped 

locomotion controller using a policy gradient method. It is worth noting that the CPG 

controller was used at the hip joints, while the knees were controlled by a state 

machine. Numerical simulations showed that an appropriate sensory feedback 

controller could be acquired. The implementation of these concepts on a physical 

robot showed that the learning controller works appropriately on a real world 

environment, although, occasional the robot could not start walking or fall off after a 

couple of steps.  

Endo (Endo et al., 2005) attempted to achieve 3D biped locomotion using a neural 

oscillator with a full-body humanoid robot QRIO. In order to simplify the oscillator 

connections and feedback pathways, authors proposed the allocation of the neural 

oscillators in a task space coordinate system, instead of the traditional way in which 

each joint has a neural oscillator allocated. In this way, they were able to reduce the 

number of open parameters in the neural oscillator, while making it much easier to 

design effective feedback pathways to generate a stable limit cycle. As result, they 

showed how straight walking with different velocities can be achieved, both in 
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simulation and in experiments with a real robot. The robustness against external 

perturbations and environmental changes was demonstrated.  

Komatsu and Usui (Komatsu & Usui, 2005) also make use of a CPG in their 

experiments with walking and running motions. They proposed a hybrid CPG method 

to perform adaptive dynamic motions by combining CPG models with a force control 

system that controls the acting reaction forces in the vertical and horizontal directions. 

Simulation and experimental studies showed that the robot was able to walk and run 

in horizontal floor and slopes, reaching speeds up to 1.6m/s (the motion is only done 

in 2D).  

2.4 Final Remarks 

While research efforts in the last years have produced some impressive progress, the 

goal of a robot with human-like abilities seems to be far away in the future. In 

particular, biped locomotion is a key research topic in humanoid robotics that is still 

far from being maturely solved. Based on a thorough review on biomechanics and 

robotics literature, this chapter highlighted a few research lines that seem to be relevant 

in framing the future of humanoid robotics. Recent advances in integrative and 

comparative study of animal locomotion have revealed several general principles (for 

reviews see Dickinson et al., 2000; Donkelaar, 2001). The generality of these 

mechanisms, observed in different modes of the human locomotion, is just beginning 

to be explored by the robotics community. For example, the mechanisms of non-

steady locomotion, including starting, stopping, and turning, are emerging areas of 

interest as well. In nature, unlike in the laboratory, straight-line, steady-speed 

locomotion is the exception rather than the rule. 

There are some active areas of research in humanoid robotics that constitute a 

relevant background for this work. Two emerging paradigms appeared in last years 

with great influence on the research focus: modular motor control and robot learning. 

There are strong evidences that basic building blocks of pattern generators co-exist at 

the spinal level and they are used by the CNS to create movements. CPGs, motion 

primitives and related concepts, such as muscle synergies, force fields, and motor 
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schemas, are seen as elementary modular controllers that produce specific movements 

under the control of a few open control parameters. Neurophysiological models and 

experiments have shown that very rich behaviours can be generated, being capable of 

modulating speed, direction, and types of gaits depending on descending control 

signals. However, the link with other motor behaviours such as scratching, standing 

up, kicking, sitting down, laying down, reaching or manipulation, remains to be 

decoded in animals and implemented in robots. 

Learning is another active branch of robotics with different bio-inspired 

mechanisms like those implementing reinforcement (Matsubara et al., 2006; Nakamura 

et al., 2007; Peters & Schaal, 2008) or imitation learning schemes (Billard, 2001; 

Mataric, 2002; Nakanishi et al., 2004a; Schaal, 1999). Researchers in humanoid robotics 

have been aware that complex sensorimotor skills can most likely only be acquired 

through learning methods. Otherwise, it is too complicated to solve problems arising 

from high-dimensional and highly nonlinear perception-action spaces. In the same line 

of thought, embodiment implies to change the paradigm from the human-like outer 

shape to more human-like principles in perception and locomotion (Anderson, 2003; 

Lungarella et al., 2003; Pfeiffer, 2007).   
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Chapter 3  

Learning in Biped Locomotion 

Humans evolve and learn from different situations occurring in everyday life, being 

able to predict the effects of their actions in the environment and, in this way, react 

accordingly. Inspired by biology, several research projects are underway to develop 

machines endowed with cognitive abilities and that can learn the same way humans 

do. This chapter provides a perspective of two techniques that have been widely used 

in the robotics field and that sometimes are commonly used together: learning from 

demonstration and learning by trial and feedback. First, an overview over the 

challenges for robot learning is provided. Then, the concept of Learning from 

Demonstration (LfD) is presented together with some examples of application in biped 

locomotion. Finally, an overview on reinforcement leaning (RL) is provided, followed 

by some examples of its use to the specific problem of biped locomotion. 

3.1 Challenges for Robot Learning 

Applying learning to the problem of biped locomotion is difficult due to the many 

DoFs, the high-dimensional state-action space and the demanding balance constraints. 

Two additional obstacles need to be considered. First, there is the lack of 

computational tools for rapid learning of new behaviours allowing the robot to adapt 

to the environment. Experience on a real physical system is tedious to obtain, 

expensive and often hard to reproduce, but it usually cannot be replaced by learning in 
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simulations alone since small modeling errors can accumulate to a substantially 

different behavior.  

The second obstacle is the lack of ability to handle incomplete knowledge of the 

environment due to uncertainties and ambiguities in perception systems. Looking 

again at the humans, it is clear that imitation is a fundamental mechanism for rapid 

learning which can be observed throughout life. For example, while children routinely 

learn new skills by imitating their parents (e.g., opening a door, throwing a ball, tying 

their shoes), adults continue to learn (improve) by imitating skilled instructors (e.g., 

playing tennis). 

3.1.1 Trajectory Representation 

The choice of the representation for the trajectory or encoding a trajectory is a central 

issue. Among the simplest representations, simple storing of large time-indexed vectors 

is one of the options (Kawamura & Fukao, 1994). Other approaches have included 

function approximators, such as neural networks (Maass et al., 2002; Zegers & 

Sundareshan, 2003) and recurrent neural networks (RNN) (Paine & Tani, 2004; Tani 

& Ito, 2003). More compact representations can be constructed by using interpolation 

algorithms such as spline fitting and only storing key viapoints (Schaal, 1999). More 

recently, Bayesian Networks (Grimes et al., 2007), Gaussian Mixture Models (GMM) 

(Calinon et al., 2007) or, hidden Markov models (HMM) (Inamura et al., 2004), have 

been used. Probabilistic models have also been used with knowledge-based systems 

(Hersch et al., 2008).  

Due to their cyclic nature, encoding of rhythmic motions requires particular types 

of encoding. Different approaches have been used as cyclically reading vectors, cyclic 

vector fields (Li & Horowitz, 1999; Okada et al., 2002), and encoding trajectories into 

the limit cycle behaviour of nonlinear oscillators (Nishii, 1998; Ijspeert et al., 2002b). 

In some representations hierarchical structures in which a trajectory is encoded as a 

superposition and/or sequence of simpler trajectories are used (Mussa-Ivaldi, 1997; 

Tsuji et al., 2002; Rohrer & Hogan, 2003; Drumwright et al., 2004). These approaches 

are generally inspired in the concept of motion primitives found in vertebrate motor 
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control (Schaal, 1999; Matarić, 1998), and these are interesting ways of making the 

encoding of multiple trajectories with a compact representation. 

Depending on the type of representation chosen, the usage of learning algorithms 

could be or not necessary. For example, no learning algorithm is needed when time-

indexed vectors (Kawamura & Fukao, 1994) are used. If the representations are based 

on spline-fitting they typically can use well-established fitting algorithms (Miyamoto 

et al., 1996), which are the via-points used by these algorithms that can be assigned by 

the user or automatically. In cases where the parameters of chosen representation are 

linear, regression methods can be sufficient (Maass et al., 2002; Ijspeert et al., 2002b) 

with the advantage of fast learning. In other cases, gradient-descent algorithms have 

been extensively used, in particularly for neural networks, as for example in variants 

of the backpropagation algorithm (Simard & Le Cun, 1992). In alternative, 

evolutionary algorithms can also be used for instantiating the network’s parameters 

with a cost function describing the desired trajectories given (Ijspeert et al., 1999). 

However, gradient descent and evolutionary algorithms are both typically slow. 

3.1.2 Adaptation by Modulation  

Besides correctly reproducing a learned trajectory, there is a high interest in adapting 

it to new conditions, i.e., modulate the learned trajectory. The modulations can be 

simple, like repeating these trajectories and varying the speed or the amplitude, or can 

be more complex, in which there can be time/space dependence in order to avoid an 

obstacle, for example. In other cases, other modulations may be necessary when, for 

example, the robot is subjected to external perturbations, and it should be noticed that 

some representations are more suitable than others for dealing with perturbations.  

In many situations, reproducing the learned trajectories at different speeds and/or 

different amplitudes can be obtained by using simple scaling laws, like with time-

indexed vector representations (Kawamura & Fukao, 1994) or using dynamic 

optimization methods, like in representations using spline fitting and via-points 

(Miyamoto et al., 1996). There exists, however, the disadvantage that the control policy 

is time dependent, which makes them highly sensitive when unforeseen perturbations 

in the environment disrupt the normal time flow. This problem is not present in neural 
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networks, that can be trained to generalize and produce a range of different motions 

from a fixed set of training examples, without requiring explicit time indexing (Zegers 

& Sundareshan, 2003). 

In human-like movements some specific features cannot be accounted for by simply 

using scaling. Encapsulation of these features can be done by optimization criteria, such 

as minimum variance of end position (Harris & Wolpert, 1998) or minimum torque 

change (Kawato, 1996). Other options include dynamical systems designed to replicate 

human movements and to generate new movements by modulating attractor points 

(Bullock & Grossberg, 1989), as well as the methods that synthetize a trajectory from 

a given set of learned motions (Ude et al., 2008; Mezger et al., 2005).  

By using coupled nonlinear oscillators (Righetti et al., 2006), reproduction and 

modulation of trajectories is also possible. Adaptive frequency oscillators were used to 

learn separate frequency components from the demonstrated trajectory and then added 

to recreate the signal. However, this system can only be modulated in speed and 

amplitude. Besides this, after suffering a perturbation, the return to the limit cycle 

regime is relatively slow because the time the system needs to converge to the right 

phase lags between the multiple oscillators that are used to encode a specific one-

dimensional signal. At the same time, when applied to complex signals or when scaling 

into multi-dimensionality, the number of oscillators grows quickly, leading to a 

complex system structure. 

One of the most complex problems is dealing with perturbations when performing 

a trajectory with a robot in the presence of obstacles and/or external forces. For 

example, a reaching movement and hitting an obstacle with a limb requires a different 

trajectory modulation during a walking sequence. There are some situations in which 

the trajectories might not need to be modulated if the natures of the perturbations are 

small and/or short. At the same time, whenever the robot is provided with an on-line 

tracking controller (e.g. a PID feedback controller), the feedback control loop could be 

enough to overcome the perturbation. However, large perturbations require on-line 

modulations of the desired trajectories to prevent risks like falling (in the case of a biped 

robot) or damage. Some approaches have been used like a criterion to modulate the 

learned trajectories (Hersch et al., 2008) or encoding desired trajectories in terms of 
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vector fields, e.g. velocity fields (Li & Horowitz, 1999), or potential fields (Khatib, 

1986). The vector fields essentially represent an attractor landscape, with the desired 

trajectory as attractor trajectory and so offering the opportunity to introduce repulsive 

forces for avoiding obstacles. 

3.1.3 Learning Paradigms 

The dependence on robots that must be carefully programmed and calibrated before 

use and thereafter whenever the task changes does not seem acceptable for robots that 

have to coexist and cooperate with humans in real-world environments subject to 

uncertainty. Therefore, there is an increasing need to go beyond robots that are pre-

programmed explicitly towards those that learn and adapt to natural and dynamic 

environments using approaches typically observed in animals. The general concept of 

machine learning refers usually to the changes in a given system that automatically 

learn to recognize complex patterns, to link perception, reasoning and action processes, 

to make intelligent decisions and to predict situations that it may encounter. Machine 

learning can be achieved at different levels of complexity, much like different scientific 

fields investigate learning processes in biological systems. Nonetheless, three learning 

paradigms are considered in the machine learning literature: supervised, unsupervised 

and reinforcement learning.  

Supervised learning is the task of inferring a function from a supervised set of 

training examples consisting of an input object and a desired output value. It has been 

successfully applied in machine learning, statistical pattern recognition, and artificial 

neural networks (e.g., classification and prediction tasks). Unsupervised learning is 

about understanding the world by mapping or clustering given data according to some 

principles, where there is no explicit teaching signal. Reinforcement Learning (RL) is 

between the two since learning occurs by means of the reward signal with possible 

delays. Many neurophysiological evidences exist pointing to that different brain 

structures are specialized in different learning paradigms, namely the cerebellum in 

supervised learning, the basal ganglia in reinforcement learning and the cerebral cortex 

in unsupervised learning (Houk & Wise, 1995; Doya, 2000).  
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3.2 Learning from Demonstration (LfD) 

In order to properly function in a real world, the gait of humanoid robots must be able 

to constantly and quickly adapt to new situations. Programming robots to perform 

such actions and that take into account the robot’s complex dynamics is a challenging 

and complex problem. Essentially, traditional approaches will require highly accurate 

and prior knowledge of the robot’s dynamics and the environment in order to create 

complex control algorithms able of generating a stable dynamic motion. Given the 

complexity of the problem, there is an increasing need to move away from robots that 

are pre-programmed explicitly towards those endowed with the ability to extract 

information from the environment, learn about it and, hypothetically, develop 

predictions.  

3.2.1 Computational Approaches Taxonomy 

A considerable research effort has been dedicated to the use of human demonstrations 

as input for teaching robots to perform from simple movements to complex skills. In 

particular, robot learning from demonstration is a powerful approach promoting 

movements that look natural and predictable and also powerful mechanism for social 

learning that has received a great deal of interest from researchers in the fields of both 

animal behaviour and child development. At least two perspectives can arise from the 

task of imitation learning and social interaction: (1) an engineering perspective, in 

which a robot that could imitate the actions of a human would provide a simple and 

effective means for the human to specify a task to the robot and for the robot to acquire 

new skills without any additional programming, and (2) a computer science 

perspective, where imitation provides a means for biasing interaction and constraining 

the search space for learning.  

In this context, the field of learning from demonstration (LfD) has explored 

computational tools for robot programming that relies on example executions of a task, 

typically provided by a human teacher (Argall et al., 2009; Billard et al., 2008). The 

survey provided by Argall et al. (Argall et al., 2009) provides a good classification of 

the correspondence between the recorded mapping (relation between the teacher 
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execution and the recorded execution) and the embodiment mapping (relation between 

the recorded execution and the learner), reproduced here in Fig. 3.1. Broadly speaking, 

the recording mapping will refer to whether the exact states/actions experienced by 

the teacher during the demonstration are recorded into the dataset in a direct form or 

there is a need for a mapping function; As for the embodiment mapping, it refers to 

the fact that whether the states/actions recorded in the dataset will relate directly to 

those the learner will execute, or if some kind of transformation/mapping function is 

needed. Based on this classification and the description provided in Chapter 5 and 

Chapter 6, the work presented in this text could be classified as imitation with a direct 

recorded mapping.  
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Fig. 3.1: Intersection between the recording and embodiment mappings. I(z,a) 
means there is a direct relation between the teacher execution and the 
recording in the recording mapping or a direct relation between the recorded 
execution and the learner action in the embodiment mapping. If the relation 
is not direct, it is represented by g function (adapted from Argall et al., 2009). 

Based on the embodiment mapping, the data acquisition can be divided into two 

main categories as follows: 

• Demonstration: the mapping is direct since the demonstration is performed 

directly on the actual robot learner; 

• Imitation: the mapping is not direct since the demonstration is performed on a 

platform other than the robot learner. 
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At the same time, the way the data is recorded in any of these classification modes 

can be further divided according to the following approaches (see Fig. 3.2): 

• Teleoperation: the teacher operates the robot, be it in a direct form (the robot 

actuators must be able to operate in a compliance mode), or through a joystick. 

In either way, the recording mapping is directly related to the actions performed 

by the teacher. As an example, consider a human manipulating a robot arm 

directly to perform a reaching task, while the robot records the joint states 

during the entire demonstration (a good example is the experiment B performed 

in Ude et al., 2010); 

• Shadowing: the robot learner records the execution using its own sensors and 

attempts to match or mimic the teacher motion as it is executed by the teacher. 

•  Sensors on teacher: sensors placed on the teacher are used to record the examples 

performed by him/her. An example is the case of marker systems placed on the 

body of the teacher, like the VICON system; 

• External observation: the sensors used to record the performed task are external 

to the executing body (teacher) and may or not be located on the robot learner. 

Data Source

How is it Acquired?

How is it Recorded?

Demonstration Imitation

Teleoperation Shadowing External
Observation

Sensors 

on Teacher

 

Fig. 3.2: Classification of the approaches used for building the demonstration 
dataset. Shadowed regions represent the approach followed in this work 
(adapted from Argall et al., 2009). 

Once a given dataset has been recorded, several approaches for deriving a policy 

from demonstration data can be envisioned. Fig. 3.3 presents a diagram introducing 

how these policies can be classified: 
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• Mapping Function: here the policy learning calculates a function with the goal 

to approximate the state to action mapping. Typically, the policy is then used 

to reproduce the teacher actions and generalize to new similar actions based on 

statistical techniques which are used to compute this mapping function; 

• System Model: the world is modelled as a state transition model, where actions 

are chosen and lead to a change on the current state to a new state. The policy is 

derived in order to maximize a reward based on the actions taken; 

• Plans: here the desired robot behaviour is represented as a plan that represents 

the policy as a sequence of actions that lead from an initial state to a final goal. 

 

The first two options can further be divided based on which statistical techniques 

are used to create the mapping function or how the reward function is defined. In the 

first case, classification techniques generally group similar inputs into classes that will 

lead to similar actions as output. Several classification techniques exist like Gaussian 

mixture models (GMMs), Bayesian networks, and hidden Markov models (HMM). On 

the other hand, regression techniques, e.g., locally weighted regression (LWR) and 

receptive field weighted regression (RFWR) map input states to output actions that can 

be derived by combining input actions. As for the reward function, this one can either 

be defined by the user or learned by the system itself by exploration (typically 

Reinforcement Learning and inverse Reinforcement Learning methods are used).  

Data Use

Plans

What is Learned?

Which statistical technique? Reward function source?

Mapping
Function

System
Model

Classification Regression Learned
Reward

Engineered
Reward

 

Fig. 3.3: Classification of the approaches to learn a policy from a 
demonstration dataset. Shadowed regions represent the approach used in this 
work (adapted from Argall et al., 2009).  



50  Learning in Biped Locomotion 

 
 

The shadowed blocks in Fig. 3.2 and Fig. 3.3 highlight the approach followed in this 

work in order to capture demonstration data and to define the policy. However, since 

the work described in this text is not limited to imitation of the movement performed 

by the teacher, but more a generalization from a single demonstration to new 

situations, classifying this work as an imitation would be very limiting. 

3.2.2 LfD in Robotics 

LfD presents however several challenges (Breazeal & Scassellati, 2002) and problems. 

However, robot learning from human demonstrations is a promising direction of 

research, followed both in simulation and on real robots (Kormushev et al., 2011; Kulic 

et al., 2012; Chalodhorn et al., 2010; Nakanishi et al., 2004b; Lee et al., 2010) with a 

wide variety of approaches for encoding human demonstrations and modelling 

locomotion tasks. One of the problems that LfD faces is the motion retargeting (this 

problem only occurs in cases that are classified as Imitation in Fig. 3.1). Some use 

methods like getting the Cartesian coordinates of the demonstrator and then applying 

IK to the robot model to obtain the joint angles (Kulic et al., 2012). Others use a 

kinematic mapping transformation based on the relationships between the robot and 

human bodies (Chalodhorn & Rao, 2010; Chalodhorn et al., 2005); this transformation 

is then passed by a PCA analysis, creating a low dimensional space of eigenposes.  

Dynamic Bayesian networks (Cole et al., 2007) are used to imitate human 3D poses 

learned using a human performer with a code coloured body suit and a probabilistic 

dynamic balance model to find stable motions without the previous requirement of 

the robot’s dynamics properties, and here various IK techniques are used to perform 

the motion retarget. Schemes based on colours had been used before (Riley et al., 2003), 

although it had been combined with a full body inverse kinematics (IK) methodology 

incorporating a kinematic model of the teacher.  

One of problems in LfD when using humanoids is the ability to perform the 

imitation while keeping the balance, a problem that can be solved by using a balance 

controller based on the inverted pendulum model, combined with a tracking controller 

that computes the joint torques and minimizes the difference from desired inputs, as 

well as the error from desired joint accelerations to track the motion capture data, 
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considering exact full-body dynamics (Yamane & Hodgins, 2009). The most recent 

approaches to policy representation well suited for robot learning from demonstration 

are based on probabilistic models (e.g., Hidden Markov Models) (Calinon et al., 2007; 

Asfour et al., 2008; Calinon et al., 2010) and dynamic movement primitives (DMPs) 

(Gams et al., 2009; Ijspeert et al., 2013, 2002a; Kober & Peters, 2011a). Motion capture 

from human dancers using markers was transferred to the upper body of a HRP1 with 

IK and motion primitives (Nakaoka et al., 2005); the upper and lower body motions 

were modified in order to satisfy the ZMP criteria.  

Most imitation works are typically done with off-line processing, but an online 

framework imitation method inspired on computer animation studies and a developed 

humanoid-normalized model to solve the motion retargeting problem, achieving a 

good success in transferring a large range of motion from human demonstrator to 

humanoid has been used (Montecillo et al., 2010); this model uses a combination of 

Cartesian positions, joint angles and virtual planes that define the human posture. In 

order to keep stability, a CoM anticipation model is used to keep the stability in single 

support phases. In other example of online motion transfer (Dariush et al., 2009, 

2008a), the proposed retargeting framework relies on human motion descriptors 

obtained from a marker-less vision algorithm combined with an online self-collision 

avoidance and optimization algorithm and kinematic constraints; the methodology is 

applied to a ASIMO robot, but only for upper body imitation without any balancing 

method proposed. In another study (Dariush et al., 2008b), the authors used a learning 

approach to generate knowledge about a number of human postures, then during the 

motion retargeting head and torso motion was monitored so that the template closest 

to the ones learned was assigned. 

Most systems for LfD are either based on marker less vision systems or marker-

based, but not both, as in (Do et al., 2008), where a system for motion imitation based 

on a master motor map (a model that provides a reference kinematic model by defining 

the maximum number of DoF) that is capable of incorporate various human motion 

capture techniques. The output of the model is then transformed to the structure of a 

ARMAR-IIIb robot using a nonlinear optimization technique with the goal focused on 

the end effector position on the task space. For the imitation task, a Cartesian control 
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approach in which a set control points are connected with virtual springs to markers 

approach is defined in (Ott et al., 2008), and then Hidden Markov Models are used for 

motion recognition and generation. In many imitation frameworks, kinematics scaling 

is used in order to accomplish the imitation tasks, but generally this requires the use of 

an extra balance control and exact end-effector position is not always guaranteed, so 

sometimes IK methodology is used after a scaling process has been performed (Sophie 

Sakka et al., 2014). The imitation problem can also be formulated as an optimization 

problem (Suleiman et al., 2008; Ruchanurucks et al., 2006) with constraints defined by 

the joint limitations of the robot. On the first, the joint motion was scaled into the 

humanoid robot’s joints and then the objective function tries to minimize the 

difference between the angular values of the humanoid robot and those of the virtual 

actor; on the second, in order to increase the convergence speed, they parametrized the 

motion with B-splines.  

Surprisingly, very few texts can be found on the literature about the subject relating 

LfD and biped locomotion and even although some use biped robots, they are not 

entirely related to biped locomotion subject itself. Using low dimensional spaces helps 

to reduce the complexity of the LfD on a framework that allows a humanoid to learn 

bipedal locomotion (Chalodhorn & Rao, 2010), combined with eigenposes and 

working as an offline motion planner. Dimension reduction represents an important 

role in the LfD, since it allows circumvent intractability due to very high-dimensional 

state and control spaces.  

Combined together with the use of dynamic Bayesian models (Grimes & Rao, 2009) 

allows for building a framework (Fig. 3.4) that provides the possibility of a humanoid 

robot to learn new behaviours from a human teacher through imitation and 

exploratory learning. A kinematic mapping that includes the scaling of the human foot 

and the ZMP trajectories and a dynamic mapping that modifies the humanoid pelvis 

motion in order to assure movement stability provide the generation of a dynamically 

whole body motions is used on a humanoid robot (Kim et al., 2009) with data 

converted from human motion capture. 
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Fig. 3.4: The BABIL imitation learning framework proposed by Grimes 
(image from article Grimes & Rao, 2009).  

Other studies (Shon et al., 2005) have used machine learning for human motion 

imitation after a low dimensional latent space that mapped from robot to human 

motion and vice-versa had been generated, and an intensive training was required using 

pairs from both motion modes so a stable motion could be achieved. 

3.3 Learning by Trial-and-Feedback 

In humans, learning plays an important role in balance stabilization, gait generation 

and modulation of new behaviours and actions. Some actions are learned anew 

throughout life likely based on a process of trial-and-feedback in which the subject 

interacts with its environment. Specifically, the human being has a direct sensorimotor 

connection to its environment that, when exercised, produces a wealth of information 

about cause and effect, about the consequences of actions and about what to do in order 

to achieve goals. For example, when learning to drive a car, humans are acutely aware 

of how the environment responds to what he/she is doing in order to influence what 

happens through his/her own behaviour. In the same line of thought, the goal of 

building robots that can adapt to their environment and learn from their experience 

has attracted many researchers.  
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Reinforcement learning is a powerful method to develop goal-directed action 

strategies (Sutton & Barto, 1998) where the system learns behavioural reactions 

controlled by reward in a trial and error process. The development of the field of 

cognitive neuroscience led to an increased interest in the brain mechanisms involved 

in the processing of rewards and punishments. As result, the computational study and 

application of reinforcement learning has expanded to diverse disciplines such as 

control theory, artificial intelligence and neuroscience. Particularly important have 

been some contributions that helped to establish and develop its relationship to the 

theory of optimal control and dynamic programming.  

At the most fundamental level, reinforcement learning is different from supervised 

learning. Learning from examples provided by an external supervisor is an important 

kind of learning, but alone it is not adequate for learning from interaction. In many 

problems, it is impractical to obtain examples of desired behaviours that are both 

correct and representative of all the situations in which the system will act. The 

importance of learning will increase as robots move away from level ground into more 

unstructured and unknown environments, being able to learn from its own experience 

by taking uncertainty into account.  

3.3.1 Formulation of a RL Problem 

More than a powerful method, reinforcement learning is best defined by characterizing 

a learning problem that can be formulated as follows: an agent (e.g., robot learner) 

interacts with the environment to achieve a goal formalized in terms of a special reward 

signal passing from the environment to the agent. Such an agent is able to sense the 

state of the environment and to take actions that affect its state within a formulation 

that includes the following three aspects: sensation, action and goal (see Fig. 3.5).  

The key idea behind RL is learning what to do (i.e., how to map situations to 

actions) in order to maximize a numerical reward signal. Instead of telling which 

actions to take, as in most forms of machine learning, the learner has to discover which 

actions yield the most reward by trying them. The agent prefers actions that it has tried 

in the past and found to be effective in producing rewards, but it has also to explore 

new actions in order to make better action selection in the future. Over many trials, 
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the robot learns the value of all states (in terms of reward proximity) and how to get 

to higher-valued states to reach the goal. In resume, one can say that trial-and-error 

search and delayed reward are two important and distinctive characteristics of 

reinforcement learning. 

 

Fig. 3.5: An illustration representing the RL problem and its components: 
agent (the mouse) performs actions (chooses a path) on the environment (the 
maze) which in turn lead to a change on the state (actual position in the maze) 
and receives a reward (positive if it find the cheese, negative if it not finds the 
cheese). 

Besides the agent and the environment, other sub-elements of reinforcement 

learning can be identified (Sutton & Barto, 1998): 

• The policy, the core of an RL agent, defines the learning agent's way of behaving 

at a given time. Roughly speaking, a policy is a mapping from perceived states of 

the environment to actions to be taken when in those states. In some cases, the 

policy may be a simple function or lookup table (in general stochastic), whereas 

in others it may involve extensive computation, such as a search process. 

• The reward function defines the goal and it represents the way of 

communicating to the agent what it wants it to achieve. In other words, it maps 

each perceived state (state-action pair) of the environment to a single number – 

the reward – indicating the intrinsic desirability of that state. The objective is to 
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maximize the total reward the agent receives in the long run. In practice, the use 

of a reward signal to formalize the idea of a goal proved to be flexible and widely 

applicable. 

• The value function specifies what is good in the long run. The value of a state is 

the total amount of reward an agent can expect to accumulate over the future, 

starting from that state. Most importantly, whereas rewards determine the 

immediate, intrinsic desirability of environmental states, values indicate the 

long-term desirability of states after taking into account the states that are likely 

to follow and the rewards available in those states. It is worth noting that value 

functions are not strictly necessary to solve reinforcement learning problems. 

For example, search methods such as genetic algorithms, genetic programming, 

simulated annealing and other optimization methods have also been used. 

• The model of the environment is the final element of a typical reinforcement 

learning system. Some reinforcement learning systems learn by trial-and-error 

and, simultaneously, learn a model of the environment that it is used for 

planning (i.e., considering possible future situations before they are actually 

experienced).  

 

The general framework described above is flexible and can be applied to many 

different problems in many different ways. In order to obtain the best policy for a 

specific task, several methods of reinforcement learning exist, namely, dynamic 

programming, Q-learning, SARSA and expected SARSA, and policy gradient methods 

(a more detailed information can be found in (Sutton & Barto, 1998; Kaelbling et al., 

1996; Andrew Bagnell, 2014). The application of RL to robotics problems is 

challenging because sensors, such as cameras, deliver high-dimensional input that does 

not define a state in a way suitable for most tasks. Furthermore, several actions are to 

be learnt in different contexts with different reward types being given. 

3.3.2 RL in Biped Walking Robots 

Salatian et al. (Salatian et al., 1997) used reinforcement learning together with a neural 

network mechanism to modify the gait of a biped robot walking on a sloping surface, 
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without a prior knowledge of its inclination. The knee less biped robot, called SD-2, 

has a total of nine links and eight joints (4 DoF per leg). Each step is divided into eight 

static configurations, called primitive points (PP), and each PP is decomposed into a 

large number of set points with duration of 28ms. Additionally, the robot has two 

force sensors in each foot, one in the toes and the other in the heel, that allow 

computing the Centre of Gravity (CoG). The system is controlled by a neural 

controller composed by a memory that stores previous learned gaits, an adaptive unit 

(AU) responsible for modifying the joint trajectories and a sensor unit. The AU 

consists of a set of four neurons for each joint, giving a total of 24 neurons (both top 

hip joints are controlled by the same signal). The difference between the forces exerted 

at the toe and the heel generate the reinforcement signal that trains the neural network. 

The robot is stable, as long as this difference equals the ideal force balance obtained by 

recording it when the robot walks on a level surface and the gait is optimal. Authors 

conducted several training and experimental trials with several unknown slopes, 

demonstrating that it is possible for a biped robot to walk adaptively on unknown 

terrains using the neural network approach with unsupervised reinforcement learning.  

Sato et al. (Sato et al., 2002) proposed a reinforcement learning method for a central 

pattern generator controller that generates rhythmic movements. Given that standard 

RL methods, such as temporal difference learning, Q-learning and actor critic methods 

are not suitable for training the CPG, authors proposed a new method called CPG-

actor-critic. This method was applied to a planar model that started to walk after about 

5800 trials. Although working properly, the learning process was rather unstable and 

it was necessary to fine tune the weights of the mutual connections among the CPG 

neurons that compose the controller with only the sensory feedback connections 

adjusted by RL. 

Morimoto et al. (Morimoto et al., 2004, 2005) used RL together with a Poincaré map 

in a simulation study with a planar five link robot. By using Poincaré maps, the robot 

was able to properly place the swing leg, while keeping the stability. In several articles 

published later, Matsubara and Morimoto (Matsubara et al., 2005b, 2005a, 2006) 

applied the policy gradient method combined with CPGs to a real robot with a U-

shape foot (no ankle joint). The CPG controller only affects the hip joints, while the 
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knee joints are controlled by a state machine (Fig. 3.6). This strategy allowed for the 

simplification of the RL process, since the number of states and action spaces is lower. 

Lee and Oh (Lee & Oh, 2007) defined initially a stable biped walk pattern based on 

a third order polynomial generator for the ankle and the hip joints. They were able to 

simulate a stable walking pattern in the sagittal plane by using both ZMP to decide on 

stability and reinforcement learning to get the proper boundary condition and the 

velocity of the walking pattern. In a different context, Tomoyuki et al. (Tomoyuki et 

al., 2009) proposed the use of reinforcement learning to increase the energy efficiency 

of biped walking generated by a CPG controller. With this in mind, authors introduced 

torque-free periods in the hip joint of the swinging leg. During these periods the 

controller does not generate any input to the hip joint. Since the initial and final 

instants dependent in some way of the walking environment, authors used 

reinforcement learning to acquire the suited values in an online fashion. 

 

Fig. 3.6: Proposed control architecture for a 5-link biped robot that combines 
CPG and a policy gradient RL function (image from Matsubara et al., 2005b, 
2005a, 2006). 

Reinforcement learning has also been used by Li et al. (Li et al., 2011) to control the 

gait patterns and enhance the walking speed of a biped robot. Firstly, they use Policy 
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Gradient Reinforcement Learning (PGRL) to control the gait of the robot using as 

reward function the velocity achieved by the robot. After 10 iterations, the velocity 

increased from an initial velocity of 30.6 mm/s to 113.9mm/s, but the percentage of 

robot’s falls reached a very high value (60%). In order to reduce this, the reward 

function was modified to take in account the stability of the robot, using a Zero 

Moment Point (ZMP) desired trajectory. With this new reward function, a speed of 

130mm/s was achieved after 16 iterations with a decrease on the falling down 

percentage to around 42.5%. Secondly, the combination of linear polynomial 

interpolation in the motion generator with a fuzzy logic controller allowed the robot 

to adjust the walking speed and direction when following a straight line. 

3.4 Final Remarks 

This chapter reviewed two widely used approaches in robot learning. On the one hand, 

methods in which a robot obtains some or all of its training data from human 

demonstrations have gained widespread interest in recent years. Learning from 

Demonstration (LfD), also referred to as Imitation Learning and Programming by 

Demonstration, has become a central topic in robotics attracting researchers from 

different areas such as robot control, machine learning and human-robot interaction 

(see Argall et al., 2009; Billard et al., 2008) for surveys about imitation learning for 

robotics). On the other hand, the use of reinforcement learning is providing a 

conceptual framework for departing from the manual “hard coding” of behaviours.  

Reinforcement learning algorithms allow a robot to carry out behaviours that 

maximize whatever it has been programmed as reward in a similar way as the 

dopaminergic system does in animals. Inspired by the brain’s dopamine-based reward 

system (Khamassi, 2005), the mechanisms involved may be associated with models 

based on the basal ganglia to endow a robot with a motivational system and action-

selection capabilities. However, applying reinforcement learning to high dimensional 

movement systems like humanoid robots remains an open problem. Peters et al. (Peters 

et al., 2003) pointed out the concepts and problems of traditional and novel 

reinforcement learning approaches in terms of their applicability to humanoid motor 
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control. Several new RL algorithms have been proposed in order to reduce the 

computation time, such as Policy Gradient methods (Peters & Schaal, 2006; Koval, 

2011; Peters & Schaal, 2008) or Cr-KR methodology (Kober & Peters, 2013).  

In any case, learning from a teacher or by practice, a suitable choice of the 

representation (or encoding) of movement trajectories is a central problem. On the one 

hand, when talking about human trajectories demonstrations whose variables evolve 

over time, a system for encoding them should possess some important properties, such 

as compactness of representation and ease of use (i.e., modulation for related new tasks). 

On the other hand, before any reward-based algorithm can be applied for solving real-

world problems in robotics, an appropriate policy representation needs to be devised. 
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Chapter 4  

Encoding Demonstration Trajectories with 

Dynamic Movement Primitives 

This work follows a promising perspective in neurosciences: the modular approach to 

movement generation in which movements result from the combination of a set of 

motion primitives. This chapter gives an overview about the concept of motion 

primitives from a neurobiological perspective and its application in robotic systems as 

well. An evolution of this concept, known as Dynamic Movement Primitives (DMP) 

is then discussed, as well as the main advantages and properties of this formulation. 

Two case studies are performed, the first one based on simulated data and the second 

one based on human motion capture data. This study allowed gaining insight about 

the implementation of DMP and how to take advantage of its properties.  

4.1 Modular Approaches to Movement Generation 

4.1.1 Neurophysiological Evidences in Animals 

The notion of a gradually increasing and changing set of primitives as a means to use a 

very high DoF actuation space is attractive. This concept is supported by evidences of 

the existence of muscle synergies and force-field primitives in the spinal cord that act 

like motion primitives. For example, experiments in frogs showed that the 

combination of muscle synergies were able to account for most movement patterns 

produced by the animal and that these can be activated from the spinal cord (Tresch et 
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al., 1999). More precisely, by stimulating certain areas of the spinal cord, they observed 

that the limb was moved in the direction of the same target posture (equilibrium point), 

independently of the initial position of the limb. They called the set of vectors 

corresponding to the directions obtained by the stimulation Force Fields. Similar 

results were shown by a combination of force fields (Giszter et al., 1993).  

Recent neurobiological ideas and experiments have refined current understanding 

of the spinal cord system in generating many neural activity patterns that would 

generate certain motion behaviours. Besides the CPGs, additional modular motor 

circuits called primitives are present in different behaviours of rats and frogs (Bizzi et 

al., 1991; Giszter et al., 1993). Experiments on decerebrated and spinalized animals 

indicate that, like CPGs, many of these motor primitives are implemented at a low 

level in the vertebrate central nervous system, namely in the brainstem and the spinal 

cord (Whelan, 1996; Stein & Smith, 1997; Bizzi et al., 2000; Tresch et al., 2002; Grillner, 

2006). These studies show different observations of the same phenomenon: the 

existence of motion primitives in the spinal cord that are combined to produce 

movement. 

A common hypothesis of human behaviour is that the CNS uses internal 

representations of the sensorimotor system and the environment to select the next 

action to perform. An inverse dynamic model is then required to find the activation 

commands to be the muscles in order to fulfil the desired task. According to some 

authors, motor primitives provide the CNS with built-in links between muscles and 

movement direction that could help finding the muscle commands generating the 

desired trajectory (Georgopoulos, 1996; Mussa-Ivaldi & Bizzi, 2000). From this 

biological perspective, animal motor control is based on motion primitives and 

complex movements are generated by combining a finite set of these simpler 

elementary movements (Thoroughman & Shadmehr, 2000; Tresch et al., 2002; Schaal, 

2002; Todorov, 2004; Flash & Hochner, 2005). Indeed, the existence of motion 

primitives seems to be, so far, the best possibility to explain how autonomous systems 

cope with the complexity of motor control and learning. 
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4.1.2 Discrete and Rhythmic Movements 

In motor control, rhythmic and discrete movements are frequently considered 

separately. By looking at the human motion, one can roughly say that the act of 

walking is an example of rhythmic movement, while the act of picking, for example, a 

bottle of water is a discrete movement. However, this is a simplified view since the 

movements performed by humans are finite and, at any instant, a simple obstacle may 

lead to a trajectory change. Hogan and Sternad (Hogan & Sternad, 2007) classify both 

movements as follows: a discrete movement is defined as a movement which occurs 

between two postures, where posture stands for a non-zero interval of time where no 

movement has occurred. Instead, rhythmic movements are categorized in several 

subsets, going from strictly periodic movements to movements with recurrent 

patterns. However, authors point out that these two definitions are not exclusive, such 

as: (1) rhythmic movements occur in between postures and, in this sense, enter in the 

definition of discrete; and (2) discrete movements can be repeated in order to become 

periodic. 

Neurophysiological evidences also provide a simplified view of movement 

generation in which the potential differences between discrete and rhythmic 

movements are not related to sensory feedback or muscle interaction, but can be 

explained by the spinal processes underlying them and the higher-level commands 

needed to activate these same processes. In experiments using chemical stimulations of 

neurons in the spinal cord of the frog, Saltiel et al. (Saltiel et al., 1998) found out that 

the areas of activation of the discrete and the rhythmic movements for a given 

orientation are topographically close. According to these findings, the difference 

between discrete and rhythmic movements at the spinal level can be due to differences 

in the topology of the network and not distinct pathways.  

In this context, Degallier and Ijspeert (Degallier & Ijspeert, 2010) defined four 

possible structures for the generation of discrete and rhythmic movements that provide 

basic grounds for reflection on the possible differences between them. They distinguish 

between two phases for a movement generation: the planning phase and the execution 

phase. Planning is the process required to choose the features of the movement, while 
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execution is the process responsible for the spatial-temporal activation of the muscles 

that generate the correspondent limbs’ trajectories. The four structures mentioned 

above are as follows:  

• Two/Two: discrete and rhythmic movements are generated through two totally 

different processes, both at the planning and the execution phases; 

• One/Two: the planning process is common to both movements, while their 

generation depends on different structures; 

• One/One: both the planning process and the generation process is common in 

both types of movements; 

• Two/One: the planning process is different for each movement, but the 

generator is common. 

For each of these structures, Degallier and Ijspeert (Degallier & Ijspeert, 2010) 

proposed several interesting mathematical models to generate discrete and rhythmic 

movements. The models are based on a powerful tool for studying qualitative time 

courses for a system as well as the interconnections between its parts. 

4.1.3 Motion Primitives in Robotics 

From a robotics point of view, the idea of using motor primitives for constructing 

controllers for complex motor skills is appealing and is attracting a growing number 

of researchers (Mussa-Ivaldi, 1997; Ijspeert et al., 2003; Todorov et al., 2005; Schaal & 

Schweighofer, 2005). The difficulty lies in identifying motion primitives that can 

constitute a full set of representative movements for all required tasks. Simple systems 

have been demonstrated for robot arms in the past (Matarić, 1998) and force-field 

primitives have been used for reactive robot obstacle avoidance (Khatib, 1986). 

However, a full set of motion primitives that can perform a range of tasks similar to 

humans has yet to be demonstrated.  

Konczak (Konczak, 2005) discusses the notions of reflexes and motion primitives 

and their evolution in time. Motion primitives are already present at the birth time 

(and even previously). From initial reflexes to controlled motions, the functionality of 

motion primitives is being integrated with later maturing of supra-spinal motor centres 
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to give rise to more complex motor behaviours and to rich interactions with the 

environment. Minh Tuan et al. (Tuan et al., 2010) deal with the problem of generating 

realistic human like reach movements from a small set of movements primitives. To 

accomplish this task, authors use two database sets, one obtained numerically and other 

from recording human movements, from which the primitives are extracted by 

applying Principal Component Analysis (PCA).  

The first attempt to use these primitives to generate realistic reaching movements 

proved to be too slow. Subsequently, another method was used with much better 

results by constraining the trajectory in the operational space and by satisfying a 

minimum jerk criterion. Another example of the use of motor primitives comes from 

Kober and Peters (Kober & Peters, 2011b). Here, the authors use motor primitives 

together with a reinforcement learning algorithm to train a robot arm to perform a 

“ball-in-a-cup” game. The proposed methodology starts with the application of LfD 

followed by a reinforcement learning method to improve the task execution. 

A few articles report the definition and composition of complex movements, using 

basic primitives, for the motion of bipedal humanoid robots (Denk & Schmidt, 2003; 

Schaal et al., 2005; Borovac et al., 2011). Denk and Schmidt (Denk & Schmidt, 2003) 

present a systematic approach to generate a database of walking primitives allowing 

step length adaptation, changes in the direction and stepping over obstacles. They use 

ZMP and friction conditions for ensuring postural stability of a biped robot and they 

validate the trajectories in simulation. Schaal and their colleagues (Schaal et al., 2005) 

discuss a framework for modular motor control based on the theory of dynamic 

movement primitives (DMP). DMP are a formulation of movement primitives with 

autonomous nonlinear differential equations, whose time evolution creates smooth 

kinematic control policies. A novel reinforcement learning technique based on natural 

stochastic policy gradients allows a general approach of improving DMPs by trial and 

error learning with respect to almost arbitrary optimization criteria. The different 

elements of the DMP are demonstrated in simulation, involving learning biped walking 

from demonstration and self-improvement of the movement patterns towards energy 

efficiency. 
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4.2 Dynamic Movement Primitives 

Dynamic Movement Primitives (DMPs) appeared as a powerful tool for motion 

representation based on demonstrations from a human teacher. This encoding 

approach possesses desirable properties that make them well-suited for trajectory 

generation, such as the possibility to change parameters online and the intrinsic 

robustness against small perturbations. The basic idea behind Dynamic Movement 

Primitives (DMP) is to use an analytically well-understood dynamical system with 

convenient stability properties and modulate it with nonlinear terms such that it 

achieves a desired point or limit cycle attractor. The approach was originally proposed 

by Ijspeert et al. (Ijspeert et al., 2002a) and, since then, other mathematical variants 

have been proposed (Ijspeert et al., 2013).  

4.2.1 Mathematical Formulation  

Discrete primitives can be defined as the counterpart of human reaching movements. 

The method allows reaching a target by modulating a set of damped spring models 

which can be written in the first-order notation as follows (generally designated as 

transformation system): 

 
( )z zz g y z f

y z

τ α β

τ

= − − +  
=

ɺ

ɺ
 Equation C hapter 4 S ect ion 1(4.1) 

where τ is a time constant, zα  and zβ are positive constants, y is the current position, 

f is the forcing term and g is the goal of the movement. The essence of the 

methodology is to transform well-understood simple attractor systems with the help 

of a learnable forcing function term into a desired attractor system. If the forcing term

f is zero, the equations represent a second order linear system with ( , ) ( ,0)y z g=  as a 

point attractor. The term f allows fitting the DMP to a specific trajectory and is 

defined as: 
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Here, 0y  is the initial state ( 0)y t = , iτ  and ic  are constants that determine, 

respectively, the width and the centres of the basis functions, x  is a state variable that 

converges monotonically to zero, indicating that the goal g has been reached and 

allowing the system to become time independent. Accordingly, the canonical system 

is given by: 

 ,xx xτ α= −ɺ  (4.3) 

In the same way, discrete movement primitives where related to discrete tasks, 

rhythmic movement primitives are related with periodic movements, like walking and 

running. The formulation of rhythmic primitives is similar to the discrete ones in 

equation (4.1), differing only on the canonical system and the forcing term that are 

defined by the following equations: 
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 (4.4) 

where r is the amplitude, Ω  is the frequency of the oscillation and the g term on the 

transformation system acts as a baseline for the oscillation.  

4.2.2 Learning from Recorded Trajectories 

The DMP formulation provides an easy way to learn from demonstration examples 

(or learning from observed behaviour). The learning process is composed by two 

phases: determining the high level parameters ( 0, ,g y τ and r ) and then learn the 

weights, 
i

ω , parameters of the forcing term. These high level parameters have different 

meanings depending on if they are from the discrete system or they are from the 

rhythmic system.  
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For discrete systems, the parameter g  is the position at the end of the movement 

(hence, the name “goal” previously mentioned) and the parameter 0y  defines the start 

point of the movement. It should be noticed that on a sequence of discrete movements, 

the goal of the previous movement will become the start point of the next movement 

and so on. Finally,τ specifies the duration of the movement. 

For rhythmic systems, the parameter g  allows setting the baseline of the 

oscillation, being given by: 

 ( )0.5 ( ) ( )demo demomin y max y× +  (4.5) 

where ( )demo
y  is a demonstration signal. As for 0y , it can be used to adjust the starting 

point of the oscillation, if it is different from 0. τ  should be set equal to the period of 

the oscillation and r  is the amplitude of the signal. 

Learning the weight parameters iω  can be performed using any of the many 

available learning algorithms such as, for example, RL. Other simple method is using 

locally weighted regression (LWR). In this case, the input to the learning algorithm is 

the demonstration trajectory defined by the triplets of position, velocity and 

acceleration: ( )demoy , ( )demoyɺ  and ( )demoyɺɺ . Re-arranging equation (4.1) and equating y  to

( )demoy , z to ( )demoyτ ɺ  and zɺ  to ( )demoyτ ɺɺ , the following equation can be derived: 

 2 [ ( ) ]target demo z z demo demof y g yyτ α β τ= −−−ɺɺ ɺ  (4.6) 

 LWR finds, for each kernel function, iψ , the weight vector iω  that minimizes the 

following quadratic error criterion: 

 ( ) ( ) ( )( )2

arg1
,

P

i i t et ik
J k f k kψ ω ζ

=
= −∑  (4.7) 

where k represents an index associated to the discrete time steps and 

0( ) ( )( )k x k g yζ = −  for the discrete DMP and ( )k rζ =  for the rhythmic DMP. This 

is a weighted linear regression problem that can be solved using a batch or an 

incremental regression. The batch solution is given by: 
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,

T
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z f

z z
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ϒ
=

ϒ
 (4.8) 

where: 
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As for the incremental solution, it can be derived using recursive least squares with 

a forgetting factor λ . Given the target data ( )targetf , the update of the weights iω  is 

performed for each time-step k  as follows: 
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 On the one hand, when the forgetting factor λ  is one, batch and incremental 

learning regressions provide identical weights iω . On the other hand, when the 

forgetting factor is less than one, the differences appear since the incremental regression 

tends to forget older data and give more weight to recent ones. An example of batch 

regression learning is given in Fig. 4.1 for a periodic signal based on the sum of 

sinusoidal functions. 

 

Fig. 4.1: An example of batch learning for a periodic signal; top: learned signal 

superimposed with the reference signal ( ( ) )t (3
1

3
demo

y sin sin tω ω= + ); bottom: 

error signal. 
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4.2.3 Extension to Multiple Degrees of Freedom  

The literature refers to three essential approaches for extending DMP to multiple DoF 

(Gams et al., 2009; Taga et al., 1991; Perk & Slotine, 2006). The most direct solution 

would be to define, for each DoF, its own complete set of dynamic equations (Fig. 4.2, 

left top). However, this would leave a situation where there is no coordination at all 

among the several DoF, which is not desirable. The second solution would be to have 

coupling terms between the several DoF (Fig. 4.2, bottom). These terms could be used 

on the canonical system whenever a phase difference between DoFs is desirable during 

rhythmic movements, such as locomotion systems. The drawback is that, generally, it 

is rather complex to fine tune the coupling terms for synchronization, stability analysis 

and dealing with the transient behaviour before the system phase-locks. 
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Fig. 4.2: Three most common approaches to multiple DoF extension of 
DMP: one complete system for each DoF (left top); only one oscillator 
(canonical system) for all DoF (right top); coupling between several DoF 
(bottom).  
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The third approach is to share the canonical system between all DoF, while 

providing a transformation system for each one (Fig. 4.2, right top). This, in turn, 

enforces that each DoF has its own set of forcing terms. By using this topology, the 

canonical system works as a clock to all DoF, providing a coupling between them. 

However a more adequate typology to a humanoid robot would be a combination of 

the second and the third approaches. In this case, each limb would have its own 

canonical system, allowing each DoF of that limb be synchronized. Furthermore, a 

coupling term between the canonical system of each limb would allow a phase 

difference to be set to a fixed value (e.g., out of phase would be the adequate phase 

difference between the two legs when walking on an environment without 

irregularities). 

4.2.4 Properties of the DMP 

Creating a good policy representation is not a trivial problem due to a number of 

challenges posed by high requirements from a robotic system. DMPs offer several 

useful properties, such as: 

• Compactness of representation: the policy should use very compact encoding, 

despite the high DoF of the robot. DMP formulation only requires a 

transformation system for each DoF and generally something like twenty to 

fifty weights parameters are sufficient to encode the learning trajectory with low 

error.  

• Smoothness: the policy representation needs to encode smooth continuous 

trajectories without sudden accelerations or jerks. 

• Time independence: this is the property of the policy not to depend on precise 

time or position, in order to cope with unforeseen perturbations. Time 

independence is present by the use of the canonical system. This will allow 

influence of the temporal evolution of the system, without affecting the spatial 

pattern created by the transformation system. 
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• Invariance property: the policy should be an invariant representation of the task 

(e.g., rotation invariant, scaling invariant, position invariant) allowing 

generalization to similar movement tasks. This allows a learned signal to keep 

the time and spatial aspect, even if some high level parameters are changed such 

as the goal ( g ), the amplitude ( r ) or the timescale (τ ). Fig. 4.3 shows an example 

of when these parameters suffer a modification using the example signal from 

Fig. 4.1. Here, it can be observed that a change of the timescale and the amplitude 

parameters around 2.2s results on a change of the frequency and amplitude of 

the signal to the double. At around 4.2 s a change on the goal parameter1 is 

performed. Finally, at 6.3 s the timescale signal is modified again, resulting on 

another duplication of the frequency of the signal. As can be observed on any of 

these modifications, the signal keeps its aspect and similarity with the original 

one. Thus invariance properties are useful when generalizing the signal to new 

situations where it is required a change on original learned primitive. However, 

there are some situations where this property is a disadvantage (see Section 

4.4.4).  

 

Fig. 4.3: Example of invariance properties of the DMP, when changing some 
of the high level order parameters.  

                                                           
1 Remember that a change on the goal parameter ( g ) on a rhythmic signal will result on a change of the baseline of 

the oscillation. 
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• Robustness to disturbances: the output of the transformation system is 

inherently robust against perturbations (e.g., external perturbations). Even 

when a perturbation occurs, the system will resume smoothly to the learned 

trajectory, as it can be observed in Fig. 4.4. Here, at around 2.1s the system was 

subject to a perturbation that ended around 5s. It can be clearly observed that 

the system resumes smoothly the learned trajectory, as expected from a second 

order system. It should be noticed that the output given by the system is the 

desired trajectory and not the real trajectory. So some kind of feedback should 

be added so that the output trajectory of the generated trajectory can be 

modified, in order to reduce the error.  

 

Fig. 4.4: Output of the transformation system when subjected to a 
perturbation. 

4.2.5 Modulation of Learned Trajectories 

It is desirable that the system is not only able to correctly reproduce the learned 

trajectory, but also to adapt the trajectory to new situations. Using the DMP 

formulation, this can be done essentially in three different ways: first, the modulation 

may occur by changing the high level parameters associated with the speed of the 

system such as the frequency of the oscillator or the timescale, while other parameters 

(amplitude and baseline) can be associated with the position at rest of a component of 
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the robot or the amplitude of a certain movement (like for example the step length on 

a biped robot).  

It is possible that, in certain situations, modulation of the high order parameters is 

not enough for the robot to adapt and a change in the learned signal by modifying the 

weight vector (low-level parameters) is required. An appropriate learning methodology 

should be carefully chosen, since there is the risk that the learning process takes an 

undesired high time to converge. An alternative for trajectory modulation requires 

incorporating coupling terms to implement closed-loop perception-acting systems. The 

possibility of adding coupling terms, allows the implementation of systems with 

coupling between the phase oscillators of different degrees-of-freedom. Coupling terms 

can be present both on the transformation system, used for obstacle avoidance 

(Hoffmann et al., 2009), or on the canonical system forcing this system to phase lock 

with an external oscillator (Sternad et al., 1996; Matthews et al., 1991) or even 

frequency modulation at a specific phase relationship (Nakanishi et al., 2004a; Pongas 

et al., 2005).  

4.3 Case Study 1: Invariance Property with Simulated 
Data 

The invariance property of DMPs is useful for generalizing movements that are not 

confined to the region of the learned primitive. In fact, the parameters that determine 

the particular shape of the trajectory of a DMP are insensitive towards movement 

translation and spatial and temporal scaling. However, the adaptation of DMPs to new 

situations becomes difficult when they are defined in joint space, because their 

parameters (e.g., goal) are not related to variables meaningful for the task. 

Alternatively, learning in task space is the solution followed to assure that a change in 

DMP’s parameters maintains desirable properties for a given task. In this work, it was 

implemented a DMP for every DoF that should learn its own forcing function, 

although all share the same canonical system. In particular, the variables involved to 

define each DMP are the positions of the elbow and end-effector in Cartesian space 

(six-dimensional DMP). 



Encoding Demonstration Trajectories with Dynamic Movement Primitives 75 

 
 

In order to evaluate the generalization performance from a single demonstration, 

two specific tasks (or two classes of DMPs) are considered: discrete straight point-to-

point movements and periodic circular paths. As result, the inverse kinematics 

algorithm is simplified: two degrees-of-freedom completely describe the elbow when 

the position of the shoulder is known (the elbow lies on the surface of a sphere centered 

at the shoulder). Similarly, the wrist can only lie on the surface of a sphere centered at 

the elbow. Although other solutions could be used, these restrictions allow 

maintaining the consistency between the study performed with synthesized and 

motion capture data.  

   

Fig. 4.5: Generalization from single demonstration; left) the DMP was 
modulated using “random” line (bold black) and then used to reproduce the 
edges and a diagonal on the cube; center) the DMP was modulated using a 
random circle (red and blue dashed) and then used to reproduce the other 
circles on two faces and inside the cube; right) the modulated DMPs on the 
other examples were used together to perform a complex movement. 

In our first experiment with simulated data (Fig. 4.5, left), a discrete DMP is trained 

using the trajectory specified by the black bold line. Once the weights have been 

learned, a test is performed in this DMP to see how well it scales to reproduce the 

movements over the edges of a cube figure and a diagonal (black dashed lines), by 

simply adjusting the start and the goal point. The resulting trajectory is depicted by 

the red dashed lines. From the visual results it can be seen that the DMP can reproduce 

the intended trajectory.  

Table 4-1 shows the error between the intended trajectory (created with the pseudo-

inverse method) and the reproduced trajectory. It can be seen that the error for the 

Elbow trajectory is considerably higher. This can be explained by the invariance 

properties of the DMP and the lower Elbow error on the diagonal confirms this, since 
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the movement used to modulate the DMP was a diagonal. Next, the same kind of test 

was performed on rhythmic movements (Fig. 4.5, center). Here, a small circle (red and 

blue line) was used to modulate the primitive. This primitive was then used to perform 

a new set of circles on two faces and inside the cube (red and green circles). Here can 

by simply adjusting 2 parameters of the DMP (amplitude and baseline of the 

oscillation) a circle can be reproduced anywhere on the work space of the robot, even 

though it does not lie on the same plane as the movement used to modulate the DMP. 

 
Movement Direction 

X-axis Y-axis Z-axis Diagonal 

Elbow error 28.1±27.9 33.9±25.8 72.0±64.8 16.2±11.7 

Wrist error 0.20±0.15 0.18±0.15 0.17±0.14 0.34±0.25 

Table 4-1: Trajectory errors for the cube once a “random” movement is learnt (MSE×10-3 and 
standard deviation). 

4.4 Case Study 2: Reproduction and Generalization 
with Captured Data  

As said in previously, DMP possess the ability to learn from observed behaviour. In 

order to collect data to train the DMP, a set of movements using a Kinect sensor was 

captured. This section and the following ones will present a set of tasks performed in 

order to capture this data using the Kinect, process it, study it and use it on DMP 

training and generalization. The Kinect sensor provides a 640× 480 depth image, at 30 

frames per second, for the skeleton-based pose estimation with depth resolution of a 

few centimetres. The human skeleton estimated from the depth image includes a total 

of 20 body joints that will be the input for our approach. This captured data consists 

of a set of Cartesian points in the 3D volume for each human pose, which will be called 

raw-data hereinafter. Several studies have assessed the accuracy of the depth 

reconstruction and joint positions from the Kinect pose estimation, including 

comparisons with ground truth motion capture data (Khoshelham & Elberink, 2012; 

Smisek et al., 2011; Obdrzálek et al., 2012). In general, these studies highlight the 

potential of the Kinect skeleton in controlled body postures whenever self-occlusions 

are avoided. 
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In the experiments a single Kinect camera positioned at about 3 meters from the 

human subject to capture the whole body standing upright was used. In this study the 

attention is dedicated to the upper limbs, including the shoulder, elbow and wrist joints 

of both right and left arms. In order to ensure the most convenient acquisition 

conditions, the human subject was asked to prevent lower trunk movements and to 

perform controlled scapular motions. Precautions were also taken to avoid occlusions 

of the upper limb parts.  

Besides the accuracy and robustness of the skeletal poses, a critical element is the 

stability of the estimated frame-to-frame body geometry. A characteristic of the human 

body skeletonization with the Kinect sensor is that the limb lengths are not kept 

constant through the entire sequence and differ between the two arms. The variations 

of the limb lengths, from frame-to-frame, for a static posture and a reaching arm 

movement were evaluated. In the static case, the mean value rounds 268 mm for the 

arm and 233 mm for the forearm, while the standard deviation is around 3.65 mm and 

1.51 mm, respectively. These measures are significantly different during the execution 

of a reaching movement: a mean of 265 mm for the arm and 216 mm for the forearm 

with a standard deviation of 15.9 mm and 8.8 mm, respectively. 

4.4.1 Constrained-Based Motion Filtering 

The pose correction method aims to convert the motion of a source human subject 

into a new motion, while satisfying a given set of kinematic constraints. These 

kinematic constraints are formulated in order to assure a kinematic model with 

constant limb lengths. The proposed method, applied to each individual frame, can be 

divided into two main steps: 

• Static calibration: the first step is a static calibration of the arms, prior to each 

data collection, to define the reference model of the subject anthropometry. 

Concretely, the human subject was told to hold his arms full extended aligned 

with the trunk (fundamental standing position), while several frames are 

acquired. A distance vector among consecutive joints (shoulder-elbow and 

elbow-wrist) is calculated as the mean value taken over all these frames for both 

arms. It should be pointed out that this arm calibration is the basis for the joint-
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angle calculations: all joints angles are defined as zero degrees at this calibration 

posture.  

• Pose correction: the basic problem is to find the closest configuration

(3 )

1 2( , ,..., ) n

nX x x x ×= ∈ℜ , with 3

1( ,..., )nx x ∈ℜ , to the measurements that are 

observed over time 
^

X , such that the distance between consecutive points (i.e., 

link lengths) remains constant.  

 

In line with this, the standard form of the optimization problem defines a 

minimization problem as follows: 

 
^

1

min
n

x
i

X X
=

−∑  (4.11) 

where •  is an appropriate matrix norm which measures goodness of fit. Here the 

Euclidean norm was admitted as a measure of closeness. The goal is to minimize the 

objective function (4.11) by selecting a value of X  that satisfies all equality quadratic 

constraints defined by: 

 
1 , 1i i i ix x d+ +− =  (4.12) 

where the left part is the Euclidean distance between two consecutive points and the 

right part is the link lengths in the reference model.  

Since the main goal is to generate large sets of human motion data for robotic imitation, 

all the computations at this point where performed offline using the Matlab 

environment. The constrained minimization problem was solved with the OPTI 

toolbox that can solve this problem of optimizing a quadratic function of several 

variables subject to quadratic constraints. In this context, the execution time is around 

15 seconds per frame on an Intel Core2 Duo CPU T9400 @ 2,53GHz. The comparison 

of the human skeletons obtained with the Kinect raw-data and those after the pose 

correction are illustrated in Fig. 4.6. Different poses are represented for a movement 

sequence involving both the right and the left arm. Table 4-2 presents some statistical 

measurements applied for quantifying the error between the Kinect raw-data and the 

filtered data after the pose correction. 
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Fig. 4.6: Overlap of the human skeletons extracted from the Kinect raw-data 
(green points and black lines) and those after the constraint-based 
optimization (red points and blue lines) at different frames (green and red 
lines represent the end-effectors’ paths). 

Joint 
Minimum 
error (mm) 

Maximum 
error (mm) 

Mean 
error 
(mm) 

Standard deviation 

Left Shoulder 0.5 25.7 15.1 7.0 

Left Elbow 8.6 89.5 31.7 14.7 

Left Wrist 5.2 75.2 30.9 16.0 

Right Shoulder 0.8 56.0 21.8 13.5 

Right Elbow 2.4 86.5 27.2 14.7 

Right Wrist 4.2 82.6 25.0 18.6 

Table 4-2: Error quantification between the Kinect raw-data and the filtered data. 

4.4.2 Kinematic Mapping 

One of the main issues in using motion capture data for training robots is to convert 

the 3D joint positions into joint angles relative to a robot model. In this context, the 

human skeleton is replaced by two 4 DoF robot arms of the same dimensions. Then, 

an inverse kinematics algorithm generates the corresponding joint angles of the robot 
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for each pose. The problem is decomposed into a per-frame inverse kinematics 

algorithm, followed by motion filtering and interpolation. 

The filtered movement data is the input for the inverse kinematics module in which 

the human arms are modeled as two independent 4-dof serial chains consisting of a 3-

DoF shoulder (rotations joints with intersecting axis) and a 1-DoF elbow joint (Fig. 

4.7). The implementation of the inverse kinematics follows some basic assumptions. 

First, the robot model was defined to match the anthropometric measures of the 

human subject, avoiding the retargeting problem (i.e., compensate for body 

differences). 

 

Fig. 4.7: Kinematics model of the two manipulator arms: both arms comprise 
4-DoF. The joint variables q1, q2 and q3 represent the spherical glenohumeral 
joint, while the joint variable q4 represents the elbow joint. 

Second, the perturbations in the movement data caused by the movement of the 

subject’s shoulder are ignored. Concretely, it was considered that all joint positions are 

uniformly affected by the perturbations and the shoulders are at the origin of the 

reference system with fixed coordinate frames. Third, the inverse kinematics considers 

mechanical constraints on the joints, such as physical limits both on the range of joint 

motions (e.g., the elbow cannot invert the motion when full-stretched) and on the 

maximum joint velocities.  

Given the 3D positions of the shoulder, elbow and wrist, the inverse kinematics 

algorithm is simplified: two degrees-of-freedom completely describe the elbow when 
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the position of the shoulder is known (the elbow lies on the surface of a sphere centred 

at the shoulder). Similarly, the wrist can only lie on the surface of a sphere centred at 

the elbow. Thus, the configuration of the arm is completely represented by four 

variables (the joint angles). Attention was devoted to avoid discontinuous jumps near 

±180º associated with the use of inverse tangent functions. 

Additionally, the implemented algorithm includes a validation test since there may 

be motions where the robot’s joints are not able to approximate the human pose in a 

reasonable way due to physical limitations. The proposed strategy to properly cope 

with the joint velocity limits is to slowing down the task-space trajectory whenever 

the limits are encountered. Thus, whenever the generated joint velocities violate the 

limits of the joint actuators, the trajectory is scaled in time by an appropriate constant 

that simultaneously assures tracking of the desired arm path and the fulfilment of the 

velocity constraints. 

The frame rate of the Kinect sensor and high frequency components in the 

movement data imposed a post-processing stage to refine results. The exact procedure 

combines basic interpolation and smoothing techniques. On the one hand, the joint-

angle trajectories are filtered using a moving average algorithm to smooth out short-

term fluctuations based on predefined trail onset and termination times. On the other 

hand, the strategy adopted to provide a more detailed description of the action 

performed by the human subject is to use spline interpolation over the set of 

observations to satisfy the requirements of differentiability. To evaluate the different 

steps of post-processing, a measure based on jerk, the third time derivative of position, 

was used to quantify smoothness at the level of the joint-angles trajectories. Concretely, 

the particular jerk metric used to quantify movement smoothness is the integrated 

squared jerk (Platz et al., 1994) defined by: 

 
2

1
( )

t

isj
t

x t dtη = ∫ ɺɺɺ  (4.13) 

A comparison of movement smoothness measures among the original signal (after 

pose correction), the moving average filtered signal, the cubic spline interpolation and 

the fifth-order spline interpolation was performed (Fig. 4.8). The exact procedure to be 
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followed depends on the ultimate goal. Anyway, the previous considerations may be 

of importance in determining what strategies are appropriate to the problem in hand. 

 

Fig. 4.8: Comparison of the smoothness measure for different motion post-
processing methods applied on the joint-angle trajectories (for graphical 
presentation, a log was applied to results from (4.13) before plotting). 

 

4.4.3 Example A: Imitation Task 

Several real-time movements executed by a human subject were captured using the 

Kinect sensor to provide validation for our algorithms. One movement consisting of 

discrete sequence of upper-limb was chosen. Fig. 4.10 compares the positions of the 

right and left wrists as seen by the filtered data and the robot simulation. The 

consistency between the two curves suggests the efficacy of the human motion 

reconstruction algorithm proposed. 

For this particular movement, the difference between the motion capture data (after 

pose correction) and the gestures replicated by the robot are quantified using the 

Euclidean distance. The time courses of the error measure for the elbow and wrist of 

the left and right arm are shown in Fig. 4.9. 
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Fig. 4.9: Difference between the motion capture data and the gestures 
replicated by the robot for the left arm (top) and the right arm (bottom).  
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Fig. 4.10: Comparison of the motion capture data (left) with the 
corresponding gestures replicated by the robot (the end-effector path is 
represented in both cases). 

4.4.4 Example B: Generalization of a Reaching Task 

The purpose of this section is to clarify the nature of the generalization performance 

from single demonstrations provided by human motion capture data. The main focus 

is placed on a three-dimensional reaching task involving the coordination of four joint 

angles (using the same 4-DoF robot model). The reaching dataset allowed maintaining 

a common set of actions throughout the experiments, while at the same time varying 

the movement kinematics required to achieve those actions. 
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Fig. 4.11: Illustration of the reaching task defined by a grid of 25 target points. 

Several reaching movements executed by a human subject were captured using the 

Kinect sensor. More specifically, reaching trajectories towards a total of 25 targets 

located on a vertical plane in front of the subject were recorded (see Fig. 4.11). The 

points were spaced by 10 cm on a 40 by 40 cm grid. The subject is instructed to perform 

each trial as follows: “After the ‘go’ signal, move the hand in one continuous motion 

to the designated target at a comfortable speed, while being as accurate as possible. Try 

to keep the speed consistent across all trials.” Prior to each experiment, the subject was 

asked to assume the same starting position. All the captured data was subject to a 

motion filter restriction (see 4.4.1) before the joint angles were computed. 

Multidimensional scaling (MDS) is used for exploring the similarity measures among 

the complete set of reaching movements. For visualization purposes, the analysis is 

performed in a 3D representation space using a 2525×  similarity matrix, in which each 

cell represents the Euclidean distance between a pair of movements evaluated along a 

reference time. The MDS visualization in Fig. 4.12 helps to find apparent clusters 

present in the data. MDS constructs a configuration of points in the three dimensional 

space from information about inter-point distances in high dimensional space. This 

new geometrical configuration of points preserves the proximities of the high 

dimensional space and, further, it facilitates the perception and interpretation of the 

data’s underlying structure. The proximity among items measures their similarities and 
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it is a distance measure (more similarity means smaller distances). In this study, the 

metric used to define the distance matrix is the Euclidean distance metric.  

 

 

 

Fig. 4.12: MDS visualization of the Euclidean distances among the reaching 
movements (top: for the elbow; center: for the end-effector; bottom: global 
distances). 

At the same time, performing PCA on the set of the 25 movements (both on the 

joint variations and on the task space variations) shows that more than 98% of the total 

variation of the data could be explained using only 3 principal components, meaning 

that the movements are probably built up in a modular way. In these experiments, the 
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generalization performance involves a metric that evaluates the accuracy of the 

reproduction in terms of spatial information using the mean-square-error (MSE) that 

compares the path followed by the elbow and the endpoint of the robot model. 

In this study, the DMP approach was tested trying to answer the following 

questions: (1) Can the coordination of motions obtained from primitives fitted to one 

particular reaching movement be used to generalize to other target points (i.e., its 

parameters are fixed and only the goals change)? (2) How well the motion primitives 

fit to new situations when they are learnt in joint space or, alternatively, in task space? 

(3) Can the problem be posed by selecting the single demonstration as a spatial 

clustering one based on the visual interpretation of the MDS? 

In order to address the first question, the motion primitives are fitted to the target 

point 13. To address the second question, the original recorded reaching movements 

are fitted by the DMPs learnt in both the joint and task space. Fig. 4.13 depicts the 

results of the root-mean-square error between the original recorded and the reproduced 

movements expressed in terms of the spheres’ radii. One simple observation is that a 

significant difference exists when the targets are located above or below the original 

target. Further, these results are in agreement with the MDS representation once they 

reflect the proximities (smaller distances) around the target point 13 (points 1, 2, 8, 9 

and 22). 

Then, these DMPs are used to reproduce the movement to the original target, point 

13. Consistent with expectations and previous results with simulated data, it was found 

that learning the DMPs in the task space is rather advantageous, as it can be observed 

in Fig. 4.13. Also the maximum error ( 3111.6 10−×  for the joint space versus 358.7 10−×  

for the task space) and the mean error ( 376.5 10−×  for the joint space versus 339.37 10−×  

for the task space) confirm these results. 

Based on the fact that closer points on the MDS graphic to the movement used to 

modulate the DMP had a minor error, a question arises: would a point on the MDS 

graphic with more points closer to it be used to modulate a DMP that lead to a lower 

error on the generalization movement? To test this hypothesis, point 12 was selected 

to modulate the DMP. The results of this test (Fig. 4.14, left) are in line with what was 

expected and it can be seen that the errors in general are lower. Computation of the 
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mean global error for the joint space case ( 348.47 10−× ) and the task space case (

333.48 10−× ) confirm this expectation. At the same time, a DMP modulated to point 

19 (Fig. 4.14, right) shows smaller errors on points that are closer (14, 15, 18, 20, 23). 

 

 

Fig. 4.13: Error between the recorded movements and the those reproduced 
by the robot when fixing the parameters of the motion primitives once fitted 
to the target point 13 (left: elbow error; centre: end-effector error; right: total 
error). The DMPs are learnt in the joint-space (top) and in the task-space 
(bottom). The minimum and maximum total errors (MSE×10-3) are the 
following: 8.4±4.9 and 111.6±72.3 (joint space); 7.1±3.3 and 58.7±39.3 (task-
space).  

 

Fig. 4.14: Error between the recorded movements and the movements 
reproduced by the robot when fixing the parameters of the motion primitives 
once fitted to the target point 12 (left) and target point 19 (right). 
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4.5 Final Remarks 

Inspired by recent neurophysiological evidences, a new representation paradigm is 

shedding light on the organization of sensory-motor structures in biological systems. 

This research direction posits that human behavior is composed of motor primitive 

units, called motion primitives (Thoroughman & Shadmehr, 2000; Tresch et al., 2002; 

Schaal, 2002; Todorov, 2004; Flash & Hochner, 2005), explaining how such elementary 

primitives can be sequenced and superimposed to accomplish more complex 

movement tasks.  

Proposed by Ijspeert et al. (Ijspeert et al., 2002a), dynamic movement primitives are 

defined by analytically well-understood dynamical systems with convenient stability 

properties. By modulating them with nonlinear terms, it is possible to achieve a desired 

point or limit cycle attractor. Dynamic movement primitives (DMP) present several 

properties that make them very attractive in robot systems, namely for biped 

locomotion. Perhaps the most important of the properties is the ability to be 

modulated with a demonstration signal, making them very useful in the context of 

robot learning by demonstration.  

When applied to biped locomotion, dynamic movement primitives are, typically, 

learned in joint space, as reported by Nakanishi et al.(Nakanishi et al., 2004a) and 

Morimoto et al. (Morimoto et al., 2008). However, exploring the generalization and 

adaptation of learned primitives by modulation of their control parameters becomes 

difficult when the demonstrated trajectories are available in the joint space. This occurs 

because a change in the primitive’s parameters does not correspond to a meaningful 

effect on the current behaviour. Unlike the above mentioned works, the use of DMPs 

learned in task-space has been applied by Pastor et al. (Pastor et al., 2009) and Ude et 

al. (Ude et al., 2010), but limited to the specific domain of robot manipulation.  

The hypothesis is that successful results can be achieved by using DMPs learned in 

Cartesian space. The main difficulty arises in multi-body systems with a large number 

of DOFs since calculating the inverse kinematics is required. Supported by the 

development of efficient algorithms for whole-body coordination (Choi et al., 2007) as 

well as advances in designing robots that can learn such kinematic models by 
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themselves (Hoffmann et al., 2010), the solution adopted here is based on DMPs 

learned in task-space and directly relate their parameters to task variables. This allows 

generating new motions which fulfil task-specific features, while maintaining the 

overall style of the demonstration.  
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Chapter 5  

Human Motion Capture 

The preceding chapter described the mathematical tools that will be used to encode 

human demonstrations based on the concept of motion primitives. This chapter aims 

to present the study that led to the extraction of the single-demonstration to be 

transferred into the humanoid robot. Firstly, the acquisition of human demonstrations 

using a VICON gold-standard motion capture system is addressed. Normal walking in 

humans, assuming no pathological issues affecting the gait, is compared with a “robot-

like” walking mode in which the subject’s feet remain in flat contact with the ground, 

forcing the bent-knee at all times. Secondly, the analysis of the kinematics and 

dynamics data acquired from the motion capture system and the force platform, 

respectively, will be addressed for both locomotion modes (normal and “robot-like” 

walking). In line with this, a comparative study of the different phases of the gait and 

the associated events is performed. 

5.1 Normal Walking in Humans 

The human gait cycle can be described as the sequence of movements that occurs 

between two consecutive contacts of the same foot with the ground (DeLisa, 1998). 

Therefore, it can be considered that the walking cycle starts with the first heel contact 

of the left (or right) foot and ends with the next heel contact with the ground of the 

left (or right) foot. According to Whittle (Whittle, 2007b), the gait cycle consists of 

seven periods associated with the following events: initial contact, opposite toe off, heel 
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rise, opposite initial contact, toe off, feet adjacent and tibia vertical. The complete cycle 

is composed of two phases: the stance phase, occurring when the foot is on the ground, 

and the swing phase, occurring when the foot is moving in the air. The first one is 

composed of four of the seven mentioned periods and lasts from the initial contact to 

toe off. It can be subdivided into loading response, mid-stance, terminal stance and pre-

swing. The second phase is composed of three of the seven mentioned periods, lasting 

from the toe off till the next initial contact. It can be subdivided into initial swing, mid-

swing and terminal swing. The events, phases and sub-phases are depicted in Fig. 5.1. 

During the walking cycle, it is also possible to identify two different periods: the 

single and the double support periods. The former corresponds to the moment in 

which only one foot is in contact with the ground and the other leg is in the swing 

phase. The latter occurs between the initial contact of the right/left foot and the toe-

off of the left/right foot, i.e., the period in which both feet are in contact with the 

ground. For each cycle, there are two periods of double support and a period of single 

support. During normal walking, the stance phase lasts about 60% of the gait cycle, 

with each double support period lasting about 10%, and the swing phase lasts about 

40%. 

During human walking, foot placement is typically quantified by spatial and 

temporal measures in a global reference frame. Examples of these measures are the step 

length and step width as shown in Fig. 5.2. These measures quantify foot placement in 

relation to the other foot without accounting for body position. However, foot 

placement closely relates to movements of the body and can also be quantified in a 

body reference frame which, in turn, may prove physiologically more relevant 

(Townsend, 1985). In the stance phase, the body centre of mass is propelled within the 

limits related to foot placement. Similarly, at the end of the swing phase, precise 

placement of the foot relative to the body establishes a new base of support at each step 

that determines the dynamic stability during walking.  

In this study, the foot placement is also defined in a body reference frame as the 

calculation of foot position relative to body position during walking (i.e., independent 

of the other foot). In a body reference frame, the step length is calculated as the anterior 

distance between the leading foot center-of-mass (reflecting foot position) and pelvis 
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center-of-mass (reflecting body position) at initial-contact. Whereas in a global 

reference frame, the step length is calculated as the anterior distance between the 

leading and trailing foot without accounting for the body position. 

 

Fig. 5.1: Events, periods, phases and sub-phases during normal walking cycle 
(from Whittle, 2007b). 

 

Fig. 5.2: Terms used to describe foot placement on the ground. 

In this study, the foot placement is also defined in a body reference frame as the 

calculation of foot position relative to body position during walking (i.e., independent 
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of the other foot). In a body reference frame, the step length is calculated as the anterior 

distance between the leading foot center-of-mass (reflecting foot position) and pelvis 

center-of-mass (reflecting body position) at initial-contact. Whereas in a global 

reference frame, the step length is calculated as the anterior distance between the 

leading and trailing foot without accounting for the body position.  

Other parameters that define the human gait are the cadence ( C ), cycle time (
c

T ) 

and forward velocity (
f

V ). The cadence can simply be defined as the number of steps 

per minute. Inversely, the cycle time, also known as the stride time, is given by: 

 120 /cT C=  Equation C hapter 5 S ect ion 1(5.1) 

The simplest definition of the forward velocity is the distance covered by the entire 

body in a given time. While the instantaneous speed varies along the whole walking 

cycle, the average forward velocity is given by:  
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Age 
(years) 

C 
(steps/min) 

Tc 
(s) 

Stride length  

2
l

S×  (m) 

Forward 
velocity 

f
V  (m/s) 

13 – 14  103 – 150 0.8 – 1.17 0.99 – 1.55 0.90 – 1.62 
15 – 17 100 – 144 0.83 – 1.20 1.03 – 1.57 0.92 – 1.64 
18 – 49 98 – 138 0.87 – 1.22 1.06 – 1.58 0.94 – 1.66 
50 – 64 97 – 137 0.88 – 1.24 1.04 – 1.56 0.91 – 1.63 
65 – 80 96 – 136 0.88 – 1.25 0.94 – 1.46 0.80 – 1.52 

Table 5-1: Typical gait cycle values for female subjects (Whittle, 2007a). 

 Age 
(years) 

C 
(steps/min) 

Tc 
(s) 

Stride length  

2
l

S×  (m) 

Forward 
velocity 

f
V  (m/s) 

13 – 14  100 – 149 0.81 – 1.20 1.06 – 1.64 0.95 – 1.67 
15 – 17 96 – 142 0.85 – 1.25 1.15 – 1.75 1.03 – 1.75 
18 – 49 91 – 135 0.89 – 1.32 1.25 – 1.85 1.10 – 1.82 
50 – 64 82 – 126 0.95 – 1.46 1.22 – 1.82 0.96 – 1.68 
65 – 80 81 – 125 0.96 – 1.48 1.11 – 1.71 0.81 – 1.61 

Table 5-2: Typical gait cycle for male subjects (Whittle, 2007a). 

Table 5-1 and Table 5-2 show the normal ranges for the cadence, cycle time and 

forward velocity for both female and male subjects, respectively, at different ages.  



Human Motion Capture  95 

 
 

5.2 Human Motion Capture: Experimental Protocol 

This section describes the experimental measurements of motion capture data to 

extract human demonstrations of normal and “robot-like” walking on a flat surface. A 

“robot-like” walking gait means that the human stance foot is constrained to remain in 

flat contact with the ground, forcing the “bent-knee” at all times. This is the typical 

configuration adopted by most humanoid robots, since the straight-leg style of human 

walking requires an articulated foot. 

5.2.1 Participants and Procedures 

Motion capture was performed in a human gait analysis laboratory equipped with a 

gold-standard VICON optoelectronic system (Vicon Systems, 2015), two HD video 

cameras, two force platforms and up to thirty non-invasive surface electromyography 

(EMGs) sensors. Three-dimensional kinematics data was collected at 100 Hz using a 

VICON system composed of 8 infrared cameras with 2.0 Mpixel resolution. A standard 

full-body marker set was attached to the following landmarks of the subject: head, 

shoulders, elbows, wrists, hands, pelvis, hip, knees, ankles and feet (as shown in Fig. 

5.3). All captured signals are synchronized with appropriated hardware and those of 

interest were extracted with the VICON Nexus software, version 1.8.5. More details 

about the VICON system are provided in Appendix B. 

Four normal young adults, suffering from no known abnormalities, participated in 

the recording sessions having been granted some practical trials. Some subjects found 

“robot-like” walking uncomfortable and a training period was crucial before a subject 

have been selected to participate in the study. The subjects were asked to walk in a 

straight line at a freely, but constant, chosen speed (his “natural speed”). The 

experimental protocol assumed desirable to provide normal visual input during the 

trials and to measure gait over a sufficient number of steps to ensure consistent time-

series analysis and statistical measures. In order to measure kinematics during many 

cycles of motion in the limited sensing volume, the subject is asked to start walking a 

few meters ahead so as to achieve a steady speed (steady-state walking) when entering 

the recording area with full-marker visibility. 
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Fig. 5.3: VICON’s markers disposition and abbreviated names. 

In order to perform a comparative analysis, human demonstrations were extracted 

both from normal and “robot-like” walking gaits on a flat surface. The “robot-like” 

gait means that the human stance foot is constrained to remain in flat contact with the 

ground, forcing the “bent-knee” during the entire cycle in contrast with the typical 

straight-legged style. Consequently, the typical heel-strike and foot-off events are not 

found in the corresponding gait patterns. In terms of skill transfer, two advantages can 

be envisioned by the “robot-like” gait. First, less effort should be required for 

transferring the kinematic data from the human to the robot. Second, it allows 

extracting directly the time courses of the centre-of-pressure. 

In addition to capturing human locomotion in flat ground (the fundamental mode 

of locomotion in this study), additional experiments included walking 

upstairs/downstairs, walking in sloped surfaces, walking in irregular terrains or 
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overcoming obstacles (see Fig. 5.4). Their main purpose is to provide examples that can 

help to define adaptation strategies for similar situations in the humanoid robot. 

 

Fig. 5.4: Experiments performed in different situations using the “robot-like” 
walking mode. From left to right: walking in level surface, walking through 
a path with small steps of increasing complexity and walking on a sloped 
ground. 

5.2.2 Spatial-Temporal Normalization 

In all trials the participants were asked to walk in straight line by selecting, preferably, 

the foot placement along a specific direction aligned with an axis of the VICON’s 

coordinate reference frame. Even so, working inside a limited working volume requires 

precise localization of the standard planes to ensure comparability of previously 

obtained datasets both during the same or different acquisitions. In line with this, an 

initial effort was dedicated to spatial normalization, i.e., placing the data into a common 

coordinate system before the gait description and analysis. The approach used for 

extracting the longitudinal plane involves collecting gait data for a number of strides 

so that the unknown model parameters are estimated from the markers placed at the 

participant’s hip section.  

At the same time, considering the availability of a fixed gait lab with a limited 

sensing volume, the elimination of transient phases resulting from changes in walking 

direction that occur when the participant approaches those limits was also required. In 

order to perform the analysis and compare the normal with the “robot-like” 

parameters, the gait cycle is defined as the time window between two successive heel 

strikes of the right foot (i.e., the initial instant of time corresponds to the right foot 
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heel strike). Each individual cycle was extracted from the time-series using an index 

based on the kinematic trajectories of the ankle, heel and toe markers, aiming to 

automatically detect this event.  

5.3 Kinematics Gait Description and Analysis 

Kinematic data were analysed off-line with customized software written in Matlab 

(Mathworks, MA). Space calibration was oriented so that the Y-axis is aligned with the 

walking direction, while the X- and Z-axis are transversal and vertical to that direction, 

respectively. Accordingly, the motion planes are defined as follows: sagittal plane (YZ), 

frontal plane (XZ) and horizontal plane (XY). The analysis method involves collecting 

data for a number of strides, time-normalizing the data from each stride to a standard 

length (100%) and then averaging the data across strides. This approach seeks to 

examine the nature of gait patterns exhibited during both normal and “robot-like” 

strides. For that purpose, the kinematics data of one representative participant is 

analysed, including spatial and temporal gait parameters. The subject’s height is 1.85 m 

and the body mass 76 kg. 

First, typical parameters are calculated from the kinematic data, including the 

average values of cadence (C), forward velocity (Vf), step length (Sl) and step width (Sw). 

The variability found from stride to stride is computed using the standard deviation. 

The subject walked with an average cadence of 120.2±7.8 (101.8±9.2) steps/min and an 

average forward velocity of 0.50±0.1 (1.0±0.2) m/s for the “robot-like” (normal) 

walking mode. Lateral and fore-aft foot placement in gait were systematically measured 

to obtain an average stride length (two consecutive steps) of 50.3±7.8 (118.7±13.7) cm 

and an average step width of 7.3±2.4 (6.7±2.0) cm. In agreement with typical values 

found in literature (Perry, 1992), the step length decreased significantly, as well as the 

forward velocity when comparing the “robot-like” with the normal gait pattern. In the 

same line of evidences (Bauby & Kuo, 2000), the lateral variability associated with the 

two walking modes exceeds that of the fore-aft direction. 

Second, the analysis of the human “robot-like” walking pattern is dedicated to gait 

trajectories directly related to kinematic parameters, such as step length, hip height and 
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foot clearance. The next graphics depict the time history plots of averaged single-stride 

gait characteristics (black line) for both normal (top) and “robot-like” walking 

(bottom). Here, the variability is represented by the full range over the several trials 

(gray region). Fig. 5.5 represents the mean trajectory of the right heel marker along the 

direction of the movement (Y-axis) obtained by centring the range of values on zero. 

The significant limitations imposed by the “robot-like” walking mode are clearly 

illustrated.  

  

 

Fig. 5.5: Heel y position (direction of the movement) for normal (top) and 
“robot-like” walking mode (bottom): the solid line shows the average 
trajectories, while the grey region shows full range of trajectories overall 
several trials. 

At the same time, the vertical displacement of the right heel marker, shown in Fig. 

5.6, allows for estimating that the swing leg motion is characterized by a mean foot 
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clearance of about 21.1±6.9 cm and 13.4±4.7 cm for the normal and “robot-like” modes, 

respectively. Besides a minor displacement during the first half of the stance phase, the 

other important difference is that, in the “robot-like” mode, the influence of the swing 

leg retraction phenomenon is not apparent (i.e., motion just prior to ground contact). 

 

 

Fig. 5.6: Heel vertical position for both human walking mode (top) and 
“robot-like” walking mode (bottom): the solid line shows the average 
trajectories, while the grey region shows full range of trajectories overall 
several trials. 

The vertical displacement of the centre-of-mass (CoM) is an important factor that 

influences energy expenditure. The pendulum-like mode of walking, which is a 

consequence of the straightness of our legs, reduces the mechanical work that our 

muscles must supply to raise and accelerate the CoM. Fig. 5.7 illustrates the vertical 

displacement of the pelvis section in percentage of maximum height derived from the 
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standard anatomical position. The typical mean values of hip height are 97.9±0.8% for 

normal walking and 88.3±0.5% for “robot-like” walking. Although the shape remains 

similar, the “robot-like” mode of walking reduces not only the mean hip height, but 

decreases also the mean peak-to-peak oscillation from 2% to 1.5%.  

 

 

Fig. 5.7: Hip height for both walking modes, show in % of the hip height 
when standing. Solid line shows the average hip trajectory from several steps; 
dashed line is the average hip height; grey region shows the full range overall 
several trials. 

A comparison between walking modes regarding pelvic kinematics is performed by 

using the VICON’s markers placed at the hip section. On the one hand, Fig. 5.8 depicts 

the results obtained for pelvic rotation after averaging the values taken from several 
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mode). From the graphics, it can be observed that, even though the pelvic rotation still 

occurs in the “robot-like” mode, the amplitude of the rotation is much lower than that 

observed during the normal walking mode (about 2.5 times lower).  

On the other hand, pelvic tilt is also present in both walking modes as illustrated in 

Fig. 5.9. Although the range of values is not very different, it can been seen that, when 

the foot is standing, there seems to be a kind of a “pause” on the tilt for the “robot-

like” mode, since the variation of the values is small at these moments (from 0 to 10% 

of the stride, and 50% to 60% of the stride). 

 

 

Fig. 5.8: Pelvic rotation for both human and “robot-like” walking modes 
(plot shows the average values taken from several steps). 
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Fig. 5.9: Pelvic tilt for both human walking mode and “robot-like” walking 
mode (plot shows average values taken from several steps). 

At last, this study includes the trunk kinematics analysis aiming to understand the 

role of trunk during walking (the rotation of the thoracic region in the horizontal plane 

is disregarded). The orientation of the trunk is estimated using the markers placed on 

the pelvis (markers LASI, LPSI, RASI, RPSI) and on the shoulders (markers RSHO 

and LSHO). The kinematic study during walking demonstrates a general inclination 

of the trunk in the sagittal plane that changes considerably from trial to trial (between 

10 and 25 degrees) with small amplitude of oscillation (< 5 degrees), without showing 

a well-defined pattern. In contrast, in the lateral plane, a similar pattern of the flexion 

on each side per cycle can be observed (see Fig. 5.10): after the middle of the double 
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support phase, where it reached its maximum, there is a bending towards the side of 

the new swing leg, reaching the aligned position at ankles crossing.  

 

 

Fig. 5.10: Lateral trunk oscillation for both walking modes. Solid line shows 
the average oscillation value taken from several steps and grey region shows 
the full range overall several trials. 
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provided by the stick diagram in the plane of the movement (see Fig. 5.11). Each body 

segment is represented by a straight line and the different segments are joined together, 

providing their spatial orientation at any point in time. This plot is repeated at equal 

intervals of time to provide a pictorial description of the movement. As expected, some 
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plantarflexion and the powered plantar flexion. Table 5-3 summarizes and compares 

all the parameters mentioned before. 

 

Fig. 5.11: Stick diagram on the plane of movement using the segments 
depicted in left side. Human natural gait on top and “robot-like” gait on 
bottom, with arms movements restricted. 

 Normal 
walking 

“Robot-like” walking Difference 

Cadence, C (steps/m) 101.8±9.2 120.2±7.8 +18.1% 

Time of cycle, Tc (s) 1.2±0.1 1.00±0.06 -16.7% 

Stride length, 2×Sl (cm) 118.7±13.7 50.3±7.8 -57.6% 

Foot Clearance, Fc (cm) 21.1±6.9 13.4±4.7 -36.5% 

Hip Height, Hh (cm) 105.5±0.9 95.7±0.5 -9.3% 

Forward Velocity, Vf (m/s) 1.0±0.2 0.50±0.09 -50% 

Step Width, Sw (cm) 6.68±2.0 7.29±2.4 +9.1% 

Double Support, DS (% Tc) 20.9 20.4 -2.4% 

Stance Phase, SP (% Tc) 58.6 62.1 +6.0% 

Table 5-3: Comparison between the several parameters of both walking modes. All values 
taken from the average of several cycles, except the last two rows taken from a cycle. The last 
column is the ratio between the previous columns. 
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5.4 Whole-Body Dynamics from the Force Platform 

As mentioned before, human motion analysis lab comprises two force platforms (see 

Fig. 5.19). These platforms provide the total force applied by the ground surface on the 

foot, without additional information about its distribution across the contact surface 

(from the heel to the forefoot). The electrical output signals that come from the force 

platforms are processed by the VICON Nexus software to produce the three-

dimensional description of the single equivalent force and moment applied to the 

surface (i.e., the three components of force and moment in the vertical, lateral and fore–

aft directions) and its point of application usually called the centre-of-pressure. 

 

Fig. 5.12: Localization of the two force platforms available at the human 
motion analysis laboratory. 

5.4.1 Ground Reaction Forces 

A very interesting signal is the ground reaction force, represented in Fig. 5.13 for both 

walking modes and both feet. Starting with what is common, notice that both feet 

present the typical heel strike transient (present at the beginning on both graphs for 

right foot and around 550 ms for “robot-like” walking mode and 650 ms for human 

walking mode for left foot), even though for the “robot-like” mode there is no real heel 

strike, since the foot will completely hit the ground. Still on this event, also notice that 

the transient has higher values at the “robot-like” walking mode, which can be 
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explained by the fact that the entire foot hits the ground at once (instead of only the 

heel), causing a higher transient.  

This can also explain the fact the “robot-like” walking mode has higher values of 

reaction forces; since the entire foot is placed at once on the ground, there is an 

immediate transfer of all the weight to that foot. Another curious difference is the 

weight transition between feet: while in the human walking mode this transfer is done 

at once (notice the reaction forces drops almost instantly when the foot is leaving the 

ground), on the “robot-like” walking mode there is first a reduction on the reaction 

force to a lower value, where it keeps stable during a while, and then finally the weight 

is all transferred to the other foot. 

 

 

Fig. 5.13: Ground normal reaction force for both walking modes and both 
feet. 
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The lateral and fore-aft reaction forces also show important information of the 

movement. These signals are represented in Fig. 5.14 and Fig. 5.15 for right foot, and 

over the complete time the foot is on the ground. Marked on the graphic with black 

dashed lines are key events in the following order: initial contact of the foot, opposite 

toe off, heel rise of the foot, opposite foot initial contact and finally the toe off. Starting 

with the normal walking mode (see Fig. 5.14), one can note that at the initial contact 

(first black dashed line) the lateral ground reaction points to the inner side of the body. 

This tells us that the body is still tilted to the left foot side, but before the opposite toe 

off, the body starts to tilt to the other side. Just at the moment of the left foot toe off 

(second black dashed line), this force is zero and then it increases, showing the body 

inclination to the right side. A little after the heel rise (third black dashed line) and 

before the opposite initial contact (fourth blacked dashed line), the body starts to 

incline to the other side, preparing for the weight transfer to the other foot, and this 

reaction force becomes near null before the toe off. For the fore-aft reaction force, a 

braking effect can be observed from the initial contact, with a little reduction of the 

braking effect, to the moment of the opposite toe off. Then, the acceleration effect 

appears with a zero value on this force corresponding to the heel rise moment and the 

peak of this force just a little after the opposite initial contact to then quickly reduce 

to zero at the toe off event. 

 

Fig. 5.14: Lateral and fore-aft ground reaction forces in one of the feet for 
human walking mode. Black dashed lines represent important events by the 
following order: initial contact, opposite toe off, heel rise, opposite initial 
contact and toe off. 
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For the “robot-like” walking mode (see Fig. 5.15), these signals reveal some 

interesting facts. Starting with the lateral component, just as in the human walking 

mode at the initial contact, the reaction component points to the inner side of the 

body, but the event of the opposite toe off only happens much later when the reaction 

force has already passed the zero value and is pointing to the outside of the body. This 

reveals that the body has already a big inclination to the right foot side when it leaves 

the double support phase. Also curious is the fact the body will only start to incline to 

the other side after the opposite initial contact (fourth blacked dashed line), even 

though there was a lateral oscillation between the opposite toe off (second black dashed 

line) and the heel rise (third blacked dashed line), given by the increase followed by a 

decrease on this reaction component.  

 

Fig. 5.15: Lateral and fore-aft ground reaction forces in one of the feet for 
“robot-like” walking mode. Black dashed lines represent important events by 
the following order: initial contact, opposite toe off, heel rise, opposite initial 
contact and toe off. 
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walking mode; this could explain the fact that instead of braking at the initial contact, 

there is still a need for acceleration of the body. 

5.4.2 Centre of Pressure Pattern 

The centre-of-pressure is defined as a representation of the path of the vertical 

component of the resultant ground-reaction force. When measured from a force 

platform, the CoP is defined as the projection on the ground plane of the centroid of 

the vertical force distribution acting on the plantar surface of the foot. In this sense, 

the CoP is the instantaneous point of application of the resultant foot-ground reaction 

vector. In reality, the total force is made up of innumerable small force vectors that are 

spread out across a finite area on the surface of the platform. Knowledge of the CoP 

trajectory during stance allows for appropriate calculations of balance control during 

gait. Additionally, the CoP velocity and the time spent in each foot region (e.g., rear-, 

mid-, fore-foot and toes) can be calculated to provide comparative baseline data. 

 

Fig. 5.16: Displacement of the CoP for both normal and modified “robot-
like” gait conditions. Footprints represent the stance foot locations obtained 
from the positions of the subject’s foot markers with respect to the force 
platform reference frame. It was found that the step-to-step variability is more 
pronounced for the lateral part of the midfoot. 
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The purpose is to compute the CoP for each stance limb using the ground reaction 

forces and moments collected from the two force plates and the software supplied by 

the manufacturer. Fig. 5.16 shows the displacement of the CoP for the normal and the 

modified gait conditions. These results lead to some observations: first, the footprint 

patterns of the right and left legs reveal a symmetrical pattern, corresponding to the 

symmetry in the spatio-temporal variables of gait. Second, it is clear, in comparison, 

that the step length and walking base are smaller in the “robot-like gait”. Third, the 

transition of the CoP from one foot to the other is faster and jerkier in “robot-like” 

gait.  

 

Fig. 5.17: Variation of the CoP over time for both walking modes. Grey 
shaded regions represent the phases of double support. 
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Fig. 5.17 shows the variation of both the lateral and sagittal CoP for both walking 

modes over time. The double support areas are marked by the grey shaded areas, where 

it can clearly be seen that the CoP quickly moves to the front and to the other foot. 

Notice that, while in human walking mode and in the single support phase, the CoP 

keeps moving in the direction of the movement along the foot (even if slower than 

when in the double support phase), in the “robot-like” walking mode the CoP stays 

most of the time in the same place, only moving on the final phase of the single support 

phase. At the same time, it should be noted that the beginning of each double support 

phase is marked by a “retraction” of the evolution of the lateral CoP. The spatial 

visualization of the CoP and the ground reaction forces for the right foot are presented 

in Fig. 5.18. 

 

Fig. 5.18: Foot outline, centre-of-pressure and sagittal plane representation of 
the ground reaction force vector for both human walking mode (left) and 
“robot-like” walking mode (right). 

A careful observation of these results shows some interesting results: first, it is 

noticeable that, during normal walking mode, the CoP starts near the heel, travels to 

the front of the foot and ends at the thumb toe. The spacing between two successive 

samples (vectors) gives an idea about the time the CoP lies in each specific area. In line 

with this, it can observed that it quickly moves from the heel, stays for some more 

time just a little bit after the heel, then evolves in a constant speed until it reaches the 

start of the toes, where it stays for a little bit longer and finally quick moves to the edge 

of the thumb toe. In the case of the “robot-like” mode, it can be seen that the CoP 

starts at the heel, but quickly moves to the middle of the foot and then to the thumb 

toe. What can be seen is that it stays much longer at the middle of the foot, than at the 

edges, from where it quickly moves away. Table 5-4 summarizes these results by 
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showing the percentage of time of the stance phase in which the CoP stays in a specific 

regions of the foot divided into rear-, mid- and fore-foot sections of equal size. 

 Normal walking “Robot-like” walking 

Rear-foot section 32.0% 38.2% 

Mid-foot section 24.0% 54.4% 

Fore-foot section 44.0% 7.4% 

Table 5-4: Mean values of the percentage of time spent by the CoP in each foot region during 
the stance phase of normal and “robot-like” gaits. The rear-, mid- and fore-foot regions are 
defined by dividing equally the plantar outline in three sections. 

5.5 Gait Cycle Phases and Events 

Section 5.1 presented the most common gait terminology used in the literature and in 

this section, some of these parameters in both normal human walking and the “robot-

like” walking data will be analysed, starting with the gait cycle events, phases and sub-

phases. Fig. 5.19 shows the heel and toe markers for both feet on segments of human 

natural walking for a little more than a whole step performed by the right foot. For 

simplicity, the initial contact (performed by the heel strike of the right foot) was placed 

at the moment 0t s= , and black dashed lines mark some of the key events. The 

complete cycle is comprised between this first initial contact (marked with the first 

black dashed line at 0t s= ) and the second initial contact marked with the last black 

dashed line (at 1.28t s= ), giving a total of 1.28 s  for the cycle time for this example. At 

0.14t s=  occurs the opposite toe off, marked also by a black dashed line. At this instant, 

the loading response sub phase ends, corresponding also to an end of the double 

support. Based on this value and the cycle value, the double support shows a duration 

of 10.9%, a little higher than the standard value of 10%. By looking to the graph, it is 

not very clear to determine where the next sub phase (mid-stance) ends. This would be 

at the event corresponding to the right heel rise, which places it somewhere near the 

0.3 s . 

The terminal stance sub phase will then start, ending at the heel strike (initial 

contact) of the opposite foot (left foot), marked with a black dashed line at 0.62t s= . 

The next sub phase (pre-swing) starts here together with the second double support 
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stage, and both end at the right foot toe off marked with the fourth black dashed line 

at 0.75t s= , which gives a duration of 10% for this second double support stage. This 

event will also mark the end of the stance phase with 58.6% duration of the cycle gait 

near the standard value of 60%.  

 

Fig. 5.19: Segment of human walking mode for a little more than a single 
step, with the vertical position of both feet heel and toe markers. Vertical 
black dashed lines mark key moments. For purpose of representation, the 
time starts at the first heel strike. 

The swing phase, composed of the initial swing and composed of the sub phases 

mentioned above will then start and end with the initial contact of the right foot 

marked at the end of the cycle with the last black dashed line at 1.28t s= , giving it 

41.4% of the gait cycle. All the values are near the standard values for human walking 

and it should be noticed that the little differences are most likely due to the selection 

of this step cycle; had another cycle been chosen, most likely there would be some 

small variation on these values. 

As for the other gait parameters, first an average of the cycle time is computed using 

all the gait cycles captured. The value obtained was 1.2 0.1s±  which agrees with the 

values in Table 5-2. This value was used to normalize all steps to the same duration and 

get the other values. So, the cadence is then given using the formula of equation (5.1), 

resulting in a value of 101.8 9.2±  steps/min clearly inside the standard values. The step 

length was already presented in section 5.2.2, so the speed can be computed giving a 
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value of 1.0 0.2±  m/s, a little below the standard values, result of a step length also lower 

than the standard. Finally, the walking base value is 66.8 19.8±  mm. 

Concerning the data given from the “robot-like” walking mode and in the same way 

that was done to the human walking mode, Fig. 5.20 shows a plot of the markers placed 

in the foot for a complete gait cycle. Before starting the analysis of the numerical data 

given by this figure, notice the following: one of the premises for “robot-like” gait was 

to walk with the feet always parallel to the ground. This restriction would result on a 

landing of the entire foot at the same time on the ground and on the lifting of the entire 

foot from the ground at the same time. This is of course totally anti-natural to the 

classic human gait: humans without any gait issues first land the heel, and then the rest 

of the foot “slowly” descends until all the foot is in contact with the ground, and on 

the rising movement the heel is also the first to rise and the toes will rise later. 

 It appears that none of the subjects was able to fully perform the intended “robot-

like” gait. A closer look at the plot in Fig. 5.20 shows that on the landing phase the 

subject is able to land the entire foot almost at the same moment. However, on the 

rising phase, it is clear that the heel rises first and the toe only rises about 100 

milliseconds later. It is possible that with an extensive training an almost perfect “robot-

like” walking mode could be achieved, but all subjects referred that the effort required 

to walk like this was intensive and very tiring. 

 

Fig. 5.20: Segment of “robot-like” walking mode for a little more than a single 
step, with the vertical position of both feet heel and toe markers. Vertical 
black dashed lines mark key moments. For purpose of representation, the 
time starts at the first heel strike. 
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The noticeable difference is that the cycle time (time that goes from the first till the 

last black dashed lines) is lower than that of the normal walking mode; in this cycle 

example, the value is 1.03 s , but the average value taken from all cycles is around 

1.00 0.06±  s. Since the movement is not the same as a human gait, it makes no sense to 

mention all the events, periods, phases and sub phases that are present on the human 

movement. There are however some similarities with the human movement, like the 

terminal stance and pre-swing sub phases, for example. There are also a stance phase 

and a swing phase and of course two double support and one single support period. 

The first double support period starts at 0t s=  and ends on the second black dashed 

line in Fig. 5.20, that is at 0.1t s= . This corresponds to 9.7% of the whole cycle, which 

is smaller than the double support in human walking mode.  

The second double support is comprised between the third and fourth black dashed 

lines in Fig. 5.20, starting at 0.53t s= and ending at 0.64t s= , giving it a duration that 

is 10.7% of the whole cycle. These results show that even with a capture frame rate of 

100fps, the precision is not high. As for the stance phase, the duration goes from the 

first right foot contact with the ground at 0t s= , until the toe off at 0.64t s= , giving a 

duration of 62.1% of the cycle time, slightly higher than the human locomotion and a 

corresponding 37.9% for the swing phase. 

5.6 Final Remarks 

In this chapter, a detailed analysis of both normal human gait and a “robot-like” gait 

was performed. Humans walk with their legs kept straight (when compared with 

typical humanoids walking) and the thighs bent inward so that the knees are almost 

directly under the body, rather than out to the side. This type of gait greatly facilitates 

upright walking during the stance phase, enabling the efficient transfer of weight 

between legs during the double-support phase. Instead, a “robot-like” walking gait 

means that the human stance foot is constrained to remain in flat contact with the 

ground, forcing the “bent-knee” at all times in contrast with the typical straight-legged 

style. This is the typical configuration adopted by most humanoid robots, since the 

straight-leg style of human walking requires an articulated foot. 



Human Motion Capture  117 

 
 

The analysis of the kinematics data reveals significant differences in terms of typical 

parameters that characterize the gait pattern, such as the average value of cadence, time 

of cycle, stride length, foot clearance and forward velocity. In a similar way, data from 

the force platforms show significant changes during the gait cycle that help to gain a 

better understanding of the limitations imposed by the “robot-like” walking style. The 

analysis involved recording human gait data from a number of strides, time-

normalizing the data from each stride to a standard length and averaging the data across 

strides. Symmetry is ensured by averaging over the corresponding data points of the 

left and the right legs. Accurate and efficient detection of gait events is also essential for 

the comparative analysis. Computational methods of event detection were developed 

relying on data from reflective markers placed on the heel, foot and toe through 

multiple frames.  

This study provides evidence of the main differences between normal and robot-like 

walking modes. However, the ultimate purpose of this study is to extract the single 

demonstration, from the “robot-like” walking pattern, to be transferred to the 

humanoid robot. The idea is to simplify the motion retargeting problem by recording 

human motion data that resembles the typical gait pattern of humanoid robots. 
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Chapter 6  

Human-to-Humanoid Motion Transfer 

After gaining a deeper insight on the limitations imposed by the “robot-like” human 

gait, the extracted single-demonstration will be transferred to the humanoid robot, 

which means addressing the “motion retargeting” problem (also referred as 

“correspondence problem”). To attain this objective, motion transfer from humans to 

humanoids must respect the kinematics and dynamics differences between the two. 

This chapter describes the methodologies used to transfer the single-demonstration, 

extracted in the preceding chapter, to the humanoid robot. First, an overview of the 

proposed approach that is divided into an offline and an online phase is provided. In 

the offline phase, the motion transfer relies on spatiotemporal scaling such that human 

and robot scale uniformly in all dimensions and, thereby, maintain their proportions. 

Then, an inverted-pendulum model relating the CoP and the CoG is described such 

that the dynamics of the humanoid robot are projected at its CoG. Finally, a CoG-

Jacobian algorithm influencing only a small number of variables that are sufficient for 

the main task is discussed.  

6.1 Overview of the Approach 

The main challenge for motion transfer from human beings to humanoid robots is 

balance. When human joint motion is directly applied to the robot, the humanoid 

robot may or may not maintain equilibrium. Therefore, the joint trajectories obtained 

from the human motion need to be modified such that the humanoid balance is 
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maintained throughout the complete motion to be imitated. Numerous research works 

have been carried out to map offline human motion to humanoid motion. Pollard et 

al. (Pollard et al., 2002) used a kinematic joint velocity filtering approach for the upper 

body motion imitation. Later, the approach was associated to motion primitives to 

include balance management (Nakaoka et al., 2003) and extended to whole body offline 

imitation. Many other offline approaches were carried in human to humanoid motion 

imitation by optimization (Suleiman et al., 2008; Do et al., 2008), by control (Kim et 

al., 2009) or by machine learning using hidden Markov models (Ott et al., 2008). The 

motivation for the approach proposed in this chapter results, in part, from the fact that 

the human demonstrations are extracted using the “robot-like” gait style in which the 

stance foot will be constrained to remain in flat contact with the ground. Fig. 6.1 

illustrates the hybrid approach based on two deployment phases that are described in 

the next subsections. 
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Fig. 6.1: Overview of the approach for transferring the single-demonstration 
from the human teacher to the humanoid robot. The Asti humanoid model 
is available in the V-REP simulation libraries. 
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6.1.1 Off-line Phase 

In the first phase, the strategy that will be used is to learn offline the human teacher 

demonstrations, including the Cartesian coordinates of the feet and the CoP. More 

specifically, the idea is to learn and encode the periodic human movements with 

nonlinear dynamical systems and modulate them through the filtered locomotion 

parameters derived from spatiotemporal scaling rules. For that purpose, a set of 

parameters that describe the main characteristics of the locomotion in task space are 

extracted from the human data. These parameters are related with the movement of 

the lower limbs such as the step length, the hip height, the foot clearance and the 

forward velocity. This modulation is possible because the DMP are learned in task-

space and directly relate their parameters to these task variables. As a result, the 

proposed encoding allows for a wide variety of human-robot geometries. 

The humanoid robot used in this work is the Asti model shown in Fig. 6.2. The 

Asti has a height of 1.28 m, weighs 73 kg and it comprises a total of 20 rotational joints. 

Of these, the 6-DoFs per leg are distributed as follows: 2-DoF in the foot, 1-DoF in the 

knee and 3-DoF in the hip. The upper trunk includes 2-DoF in each shoulder, 1-DoF 

in each elbow and 2-DoF in the neck/head. 

As mentioned before, the offline phase is based on spatiotemporal scaling of a set of 

locomotion parameters that characterize the gait pattern extracted from human 

demonstrations, such that human and robot scale uniformly in all dimensions and, 

thereby, maintain their proportions. The idea of applying scaling rules is, for example, 

described by Hodgins and Pollard (Hodgins et al., 1997) for automatically adaptation 

of existing behaviours of an animated character to a new one with different limb 

lengths, masses and moments of inertia. Here, the robot motion is computed from the 

human motion based on the following spatiotemporal scaling rules applied to the 

locomotion parameters: (1) spatial scaling is expressed as the ratio between human and 

robot body height in the vertical direction and the direction of progression, (2) spatial 

scaling is expressed as the ratio between human and robot hip breadth in the side-ways 

direction, and (3) the robot has the same cadence (steps per minute) of the original 

human data. 
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Fig. 6.2: Humanoid robot and coordinate systems in the V-REP simulation 
environment (left) and the joint kinematic layout of the robot model with 
the rotational joint axes (right). 

When scaling the locomotion parameters, a similar mapping occurs in the rhythmic 

dynamical system since the DMP parameters are directly related to task variables. This 

allows generating new motions which fulfil task-specific features, while maintaining 

the overall style of the demonstration. The invariance property of the DMP is useful 

for transferring the locomotion skill when their properties are not just confined to a 

very local area of the original learned primitives. Specifically, it should be noted that a 

change of the DMP parameters creates, automatically, a rescaling of the entire 

movement. As a result, the limit cycle of the dynamic system represents a model of the 

learned model. 

As mentioned before, the difference of the masses and moments of inertia will be 

solved in the second deployment phase. At this point, a comparison is made between 

human and robot mass distributions, assuming the bodies are divided into four 

sections: head, arms, trunk and legs. Fig. 6.3 shows the difference between robot data 

and the anthropometric data (Winter, 1990), when expressing the mass of each segment 

as a percentage of the total body mass. The most notable difference occurs at the trunk 

section where the Asti robot has a value far below what happens in the human case, as 
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opposed to what happens with the upper- and the lower-limbs. This gave rise to the 

decision of restricting the movement of the trunk section and the upper-limbs during 

the gait cycle. In line with this, the trunk section should remain in a static upright 

position, while the arms vertically aligned at the sides. This decision is related to two 

facts: the pelvic rotation during human walking shows reduced amplitude and the Asti 

robot is not provided with additional DoFs in the spine.   

 

Fig. 6.3: Differences in the mass distribution between the human subject and 
the Asti robot as a percentage of the total mass. 

6.1.2 On-line Phase 

In the second phase, the learned trajectories of the robot’s feet and the reference CoP 

will be used by the humanoid robot online, in autonomous manner, accommodating 

motion goals and balance constraints. On the one hand, the outputs of the DMP 

associated with the robot’ feet are converted, through an inverse kinematics algorithm, 

to the desired joint trajectories used as reference input to a low-level feedback 

controller of the lower limbs. On the other hand, the reference CoP (stability criterion) 

is the input argument for a reduced model that allows computing the reference 

Cartesian trajectory for the robot’s CoG. This reduced model (variation of the inverted 
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pendulum model) allows ignoring the movements of the individual limbs of the 

humanoid and, instead, to focus on two important points: the CoP and the CoG. In 

the scope of this work, the pressure point is modelled as moving along the foot by 

approximating the profile of the human teacher.  

This implementation explores the concept of centroidal dynamics, following the 

same perspective already pursued by other authors when moving from the joint-

trajectory based ZMP control of humanoids for direct CoM control using simple 

models, such as the Linear Inverted Pendulum Model (LIPM) proposed by Kajita et al. 

(Kajita et al., 2003). Such reduced models pave the way for the development of novel 

controllers that, otherwise, would be difficult to design by addressing the complex 

humanoid dynamics.  

However, it is worth noting that, although these models are relevant at the planning 

stage, an approach based on a reduced model of the humanoid robot is not able to 

immediately provide full joint control. As soon as the main characteristics of the 

control approach are formulated in the reduced-dimensional space, the strategy needs 

to be mapped back into the full dynamic model of the humanoid. For example, a CoG-

based control is only concerned with the regulation of the CoG motion. However, the 

final joint trajectories are subsequently obtained by imposing additional constraints. 

Then, an inverse kinematics algorithm is implemented such as the CoG of the 

whole-body is related with the active joints through a Jacobian. The implementation 

follows the concept of robot kinematic control that consists of solving the motion 

control problem into two stages: first, the desired end-effector trajectories are 

transformed into the corresponding joint trajectories through inverse kinematics. 

Then, these joint trajectories constitute the reference inputs to some joint space control 

scheme. In line with this, the robot kinematics is handled outside the control loop 

allowing the problem of kinematic singularities and/or redundancy to be solved 

separately from the motion control problem. 
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6.2 CoM Trajectory from a Desired CoP 

A number of inverted pendulum based models have allowed gaining a deeper insight 

into the dynamics of a humanoid robot. In general, these reduced humanoid models 

contain as an integral component the CoM, playing a key role in the analysis and 

control of the system. The centre-of-gravity (CoG) of a humanoid robot is, 

simultaneously, the effective location of the robot’s total mass and, at the same time, 

the point through which the resultant gravity force acts. In other words, an enhanced 

understanding of the humanoid dynamics can be obtained simply by following the 

trajectory of its CoG and CoP. 

By modelling walking with an inverted pendulum, the foot acts as the pivot point 

and the body’s entire mass is represented, at the end of the pendulum, by a single point 

mass. According evidences with human motion measurements (Herr & Popovic, 2008), 

this model fails when assuming that the pressure exerted by the foot acts at a single 

fixed pivot point. This is because it incorrectly predicts the forces acting on the body’s 

centre of mass unless the pressure point moves along the foot. In line with this, a 

number of progressively complex models are currently used for analysis and control 

(see Fig. 6.4). 

CoM

CoP

Lean Line

 

Fig. 6.4: Schematic representation of some reduced one-legged models used in 
human and humanoid balance and gait analysis. From top to bottom and 
from left to right: the rigid inverted pendulum, the telescopic inverted 
pendulum, the cart-table model, the linear inverted pendulum model (LIPM) 
and the variable impedance inverted pendulum. 
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The selection of an appropriate reduced model should take into account two aspects: 

the utility and the complexity of the adopted model. A key aspect is the physical effect 

that the model is intended to capture according its specific application domain. 

Anyway, there is more than one way to improve the simple “point mass” inverted 

pendulum, each with its unique pros and cons. The Cart-Table model and the inverted 

pendulum model are the most common reduced models used to approximate the robot 

dynamics. In this work, the humanoid robot is modelled based in the LIPM model. 

Often, this model is used in combination with desired foot trajectories. A trajectory 

for the centre of mass is generated so that the centre of pressure is always within the 

base of support.  

In the scope of this work, the humanoid robot is modelled by an extension of the 

LIPM and the algorithm for applying it is as follows: first, foot placements are extracted 

from human demonstrations and the desired CoP trajectory is derived based on it, as 

well. Then, the CoG trajectory is calculated by the reduced model. Finally, inverse 

kinematics based on a CoG-Jacobian algorithm is used to find the joint angular 

trajectories. 

The humanoid robot is subjected to both internal joint force/torque as well as 

external forces. The relationship between the CoP and the CoG is obtained by 

considering all the external forces acting on the humanoid system, which include the 

gravity force at the humanoid CoM, ground reaction forces (GRF) between the robot 

feet and the support surface and all the other interaction forces applied on the robot 

(e.g., perturbation forces).  

For a humanoid robot to be in an equilibrium state, the following equations must 

be held with the position of the total ground reaction force denoted by [px, py]T being 

underneath the foot supporting polygon:  

 
( )
( )

x COM y COM COM COM

y COM x COM COM COM

p Mz Mg L x Mg z Mx

p Mz Mg L y Mg z My

+ = + +

+ = + +

ɺ ɺɺɺɺ

ɺ ɺɺɺɺ
 Equation C hapter 6 S ect ion 1(6.1) 

where M denotes weight of the humanoid robot, COMz  and COMzɺɺ  denote the vertical 

position and acceleration of the robot’s CoM, COMz  and COMy  denote the position of 

the CoM in the x- and y-directions, respectively. xL  and yL denote the rate of change 
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in the angular momentum at the CoM of the humanoid robot in the x- and y-directions, 

respectively. From these relations, the position of the CoP can be calculated as follows: 
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g z
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g z
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 (6.2) 

where the vertical displacement of the CoG, COMz , is obtained by approximating the 

average data extracted from the VICON system by a sinusoidal function.  

The next problem is to generate the trajectories of the CoG in the x- and y-

coordinates. This is known as the inverse problem and it can be solved in two steps: 

first, by using a central difference approximation to discretize the second derivative of 

COMxɺɺ . Second, substituting the result in the above equation gives rise to the tridiagonal 

system that can be solved efficiently using the Thomas algorithm (Thomas, 1949). 

6.3 Inverse Kinematics Based on the CoG-Jacobian 

The preceding section described how the CoG trajectory can be planned from the 

desired CoP trajectory using a reduced inverted pendulum model. After this step, a 

computational method will be employed for relating the CoG of the whole-body with 

active joints by resorting to a differential mapping based on the Jacobian. More 

specifically, this work follows the ideas of Choi et al. (Choi et al., 2007) who proposed 

a method of real-time motion generation for humanoids with the motion-embedded 

CoG-Jacobian. 

6.3.1 CoG-Jacobian 

The Jacobian is one of the most important tools for characterizing complex robotic 

systems, such as humanoid robots. It is useful for developing inverse kinematics 

algorithms and designing control schemes. There are several works in the literature 

focused on the generation of whole-body motions for complex mechanisms such as 

humanoid robots (Choi et al., 2007; Kajita et al., 2003; Sugihara & Nakamura, 2002). 

A popular approach for motion planning has been to specify the task to be 
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accomplished by a given end-effector. Among these works, inverse kinematics 

algorithms which relate the whole body motion with the motion of the robot’s centre 

of mass become popular.  

In general terms, the kinematics of a humanoid robot with n-DoF can be expressed 

in terms of a nonlinear relationship between the joint vector q and the task vector xG, 

i.e.,  

 ( )G f=x q  (6.3) 

A numerical approach to solve (6.3) can be pursued by resorting to the differential 

mapping, such that: 

 ( )G GJ=ɺ ɺx q q  (6.4) 

where ( ) /GJ f q= ∂ ∂q  is the CoG-Jacobian. The linearity in the configuration velocities 

is the important advantage of (6.4) over (6.3). This allows solving the differential 

kinematics by a suitable inversion of the Jacobian matrix: 

 ( )1

G GJ −=ɺ ɺq q x  (6.5) 

which can be integrated over time to give q. 

The CoG-Jacobian, for humanoid robots, was firstly proposed by Kagami et al. 

(Kagami et al., 2000) using a numerical algorithm. Later, an analytical formulation of 

the CoG-Jacobian was proposed by Sugihara et al. (Sugihara & Nakamura, 2002). The 

method needs considerable computation for solving an optimization problem. In line 

with this, Choi et al. (Choi et al., 2007) proposed a walking controller for improving 

the feasibility of a task.  

6.3.2 Centre-of-Mass of the Robot System 

The position of the CoM of the robot system, represented on the world coordinate 

frame, is the point G defined by the position vector c, given by: 

 
1

n
o

o o j

j

R
=

= + ∑c l c  (6.6) 

where n  is the number of limbs, c  is the position vector of CoM represented on the 

world coordinate system, and o

jc  means the CoM position vector of the jth limb 

represented on the body centre coordinate frame. Differentiating both members of 
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(6.6) with respect to time, the conventional CoM Jacobian explained in (Sugihar et al., 

2002b) is obtained as follows:  

 ( )
1

j

n
o

o o o o o c j

j

R J
=

= + × − ∑ɺɺ ɺc l ω c l q  (6.7) 

where 3 j

j

no

cJ
×∈ ℜ is the CoM Jacobian matrix of the jth limb represented on the body 

centre coordinate frame, jn  is the number of active links of the jth limb, and hereafter, 

the relation 
j j

o

c o cJ J≜  will be used. 

At this point, it is convenient to express the CoG-Jacobian matrix of each individual 

limb on the body centre frame. For the jth limb, this matrix can be expressed by: 
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 (6.8) 

where 3

,

o

j k ∈ ℜc  represents the position vector of the centre of mass of the kth link in 

jth limb represented on the body centre frame. The mass influence coefficient of the 

kth link in the jth limb is defined as 

 ,

,

,1 1

j k

j k n n

j ki k

m

m
= =

=
∑ ∑
≜μ

mass of th link in th limb

total mass

k j
 (6.9) 

where the CoM position of the jth limb represented on body centre frame is obtained 

as follows: 

 , ,

1

jn

o o

j j k j k

k=

= ∑c μ c  (6.10) 

6.3.3 IK Solution with Embedded Motion 

This subsection provides all the details of the kinematic resolution method of CoM 

Jacobian with embedded motion proposed by Choi et al. (Choi et al., 2007). In this 

work, it is assumed that the upper bodies is kept erect or slightly bend forward, while 

the arm movements are restricted. In this case, the humanoid robot has n = 3 limbs 

(two lower-limbs and an upper limb) and the stance leg is assumed as the base limb. 

Although the base limb can be any limb, it should be on the ground to support the 
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body. Each limb of a robot is hereafter considered as an independent limb. In general, 

the jth limb satisfies the relation 

 o o

j j jJ=ɺ ɺy q  (6.11) 

for 1,2, ,j n= … , where 6o

i ∈ℜɺy is the velocity of the end point of the jth limb, 

jn

j ∈ℜɺq is the joint velocity of the jth limb, 
6 jno

jJ
×∈ℜ is the usual Jacobian matrix of 

the jth limb, and jn  means the number of active links of the jth limb. The leading 

superscript o  implies that the elements are represented on the body centre coordinate 

system which is fixed on the humanoid robot. 

Compatibility Condition 

The end-point position of the jth limb represented on the world coordinate is given 

by: 

 o

j o o jR= +l l l  (6.12) 

where oR  is the rotation matrix of body centre frame with respect to world coordinate 

frame. Let us differentiate the aforementioned equation, then 
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in which 

 [ ]
0

0

0

z y

z x

y x

a a

a a

a a

 −
 

× = − 
 − 

a  (6.14) 

By including the angular velocity, then the total velocity of the jth limb motion 

represented on the world coordinate is as follows: 
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Therefore, 
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in short 
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In our specific case, the body centre is floating, and consequently, the end point 

motion of the jth limb about the world coordinate system can be written by: 

 1 o o

j j o o j j j j jY Y J J−= + ← =ɺ ɺ ɺ ɺ ɺy y q y q  (6.18) 

where 6;T T

o o o
 = ∈ℜ 
ɺɺy l ω  is the velocity of the body centre represented on the world 

coordinate system, and 
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where jY  is a (6 6)×  matrix that relates the body centre velocity and the jth limb 

velocity, and 3I  and 30 �are an (3 3)×  identity and zero matrix, respectively. o

o jR l  is 

the position vector from the body centre to the end point of the jth limb represented 

on the world coordinate frame and [( ) ]×i  is a skew-symmetric matrix for the cross 

product. oY  is the transformation matrix, in which 3 3

oR ×∈ℜ  is the orientation of the 

body centre represented on the world coordinate frame. Hereafter, the relation

o

j o jJ Y J≜  will be used. 

All the limbs in a robot should have the same body centre velocity. From (6.18), it 

can be seen that all the limbs should satisfy the compatibility condition, that is, the 

body centre velocity is the same and, accordingly, the jth limb and the kth limb should 

satisfy the following relation: 

 ( ) ( )o

j j j j k k k k
Y J Y J− = −ɺ ɺ ɺ ɺy q y q  (6.20) 

From (6.20), the joint velocity of any limb can be represented by the joint velocity 

of the base limb and Cartesian motions of limbs. Actually, the base limb should be 
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chosen to be the support leg in single support phase or one of both legs in double 

support phase.  

Expressing the base limb with the subscript 1, then the joint velocity of the jth limb 

is expressed as 

 ( )1 1 1 1j j j j jJ J Y J+ += − −ɺ ɺ ɺ ɺq y y q  for 1, 2, ,j n= …  (6.21) 

where jJ + means the Moore–Penrose pseudoinverse of jJ  and 
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Based on the compatibility condition, the inverse kinematics of a humanoid robot 

can be solved by using the information of base limb like. 

CoM-Jacobian with Embedded Motion 

The motion of body centre frame can be obtained by using (6.18) for the base limb as: 
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where 
1v

J  and 
1

Jω  are the linear and angular velocity part of the base limb Jacobian 

1J  expressed on the world coordinate frame, respectively. Now, if (6.21) is applied to 

(6.7) for all limbs except the base limb with subscript 1, the CoG motion is rearranged 

as follows: 
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It should be noted that when (6.23) is applied to (6.24), then the CoG motion is only 

related with the motion of base limb: 
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where
1 1c

= −l c l  Also, if the base limb has the face contact with the ground (the end 

point of base limb represented on world coordinate frame is fixed, 1 0=ɺy , namely, 

1 10, 0= =ɺl ω  then the CoM Jacobian matrix with fully specified embedded motions 

can be written like usual kinematic Jacobian of base limb 

 1fsem fsem
J=ɺ ɺc q  (6.26) 

where 
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Here, if the CoM Jacobian with fully specified embedded motions is augmented 

with the orientation Jacobian of body center (
1 1o J= −
ω

ω q ) and all desired Cartesian 

motions are embedded in (6.27), then the desired joint configurations of base limb 

(support limb) are resolved as 
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where the subscript d means the desired motion and 
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The CoM motion with fully specified embedded motions ,fsem d
ɺc  consists of two 

relations: a given desired CoG motion (the first term) described in the previous section 

and the relative effect of other limbs (the second term), in which all the given desired 

limb motions j,d
ɺy  are embedded in the relation of CoM Jacobian. Therefore, the effect 

of the CoG movement generated by the given limb motion is compensated by the base 

limb. By solving (6.29), the desired joint motion of the base limb is obtained. The 

resulting base limb motion makes a humanoid robot balanced automatically during the 

movement of the all other limbs. With the desired joint motion of base limb, the 

desired joint motions of all other limbs can be obtained by (6.21) as follows: 

 ( ), , 1 1 1, for  2, ,    j d j j d j d j nJ Y J+
== + …ɺ ɺ ɺq y q  (6.31) 
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The resulting motion follows the given desired motions, regardless of balancing 

motion by base limb. In other words, the suggested kinematic resolution method of 

CoM Jacobian with embedded motion offers the WBC function to the humanoid robot 

automatically, allowing various contexts and for various purposes. 

6.4 Extracting the Single Demonstration  

The key idea is to transfer a single demonstration from human captures performed 

with the VICON system into a single demonstration applied to the humanoid robot. 

The framework detailed in the preceding sections solves the motion retargeting 

problem for balance and locomotion. Fig. 6.5 illustrates the CoP recorded from the 

human subject when performing a “robot-like” gait (after applying the necessary 

scaling factor) that is used as input reference.  

This plot represents the spatial evolution of the CoP with respect to the Asti 

reference frame, starting at the point marked with a green asterisk: the CoP quickly 

moves from the left foot to the right one. Then, the CoP moves over the supporting 

foot, but since the referential is located at the Asti coordinate frame, it seems that 

moves back. When the left foot reaches the ground, the CoP quickly moves in that 

direction, repeating an almost symmetrical form before finishing at the red cross. The 

movement will repeat periodically, so choosing a signal, as seen from this coordinates 

system, has an advantage that it can used to train for example a set of DMPs (one for 

each coordinate). 

The inverse kinematics mapping algorithm described in Section 6.3 results in the 

joint angles trajectories needed to accomplish the specified task, including balance and 

stability. In order to evaluate the proposed approach, the joint angles are first 

transformed into the desired foot’s trajectories (see Fig. 6.6). Then, these time courses 

are used for training rhythmic movement primitives aiming to evaluate the stable 

walking and generalization abilities. Fig. 6.7 shows a sequence of snapshots of the Asti 

walking with the single demonstration signal extracted from the VICON data.   



Human-to-Humanoid Motion Transfer  135 

 
 

 

Fig. 6.5: Displacement of the CoP with respect to the Asti coordinate frame 
(the Y-axis points towards the movement direction) during a stride for the 
“robot-like” gait pattern.  

  

Fig. 6.6: Time courses of the x-, y- and z-coordinates of the robot’s foot with 
respect to the Asti coordinate frame. 
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Fig. 6.7: Asti snapshots when walking with the single demonstration signal 
extracted from the VICON data.  

The central objective of this work is to evaluate how the proposed framework based 

on DMP can be used to generalize and adapt this single demonstration by adjusting a 

few open control parameters of the learned model. More specifically, the applicability 

of the proposed control system will be demonstrated by numerical simulations, 

focusing on the adaptation of the robot’s gait pattern to irregularities on the ground 

surface, stepping over and avoiding obstacles and, at the same time, on the tolerance to 

external perturbations. Having this in mind, two modifications are performed at the 

off-line phase by modulating the DMP parameters previously learned from the 

VICON data. Concretely, the forward velocity and the lateral motion are modified by 

trial and error aiming to improve balance and temporal symmetry of signal (this 

symmetry is present on the other components), because the dynamics of resulting 

walking gait appears to be quite inappropriate for generalization purposes. A 

smoothing process is also applied to all components. 

After applying the online phase, the final single demonstration is superimposed with 

the trained DMP and the phases of double support in Fig. 6.8. The sequence of steps 

performed by the Asti when using the DMP trained with the single demonstration 

signal extracted from the VICON signal can be illustrated in Fig. 6.9. 
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Fig. 6.8: Final single demonstration signal with the trained DMP 
superimposed and the double support phases represented by the grey shaded 
regions.  

 

Fig. 6.9: Sequence of steps performed by the Asti when using the DMP 
trained with the single demonstration signal extracted from the VICON 
signal. 

Finally, the invariance property of DMP is particularly useful when trying to 

generalize a learned primitive that is not confined to a very local area of the originally 

one. In line with this, several experiments were conducted in order to determine the 

range of locomotion parameters that could be used after training the DMP with the 

extracted single demonstration. Table 6-1 summarize these results, by keeping some of 

the parameters fixed and changing at least one parameter. It should be noticed that 

when changing some parameter, others may also be directly affected.  
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Fixed Parameters Maximum Sl 
Maximum 

Vf 
Maximum C 

C= 58 steps/m & FC= 3.5 cm 20.68 cm 20.0 cm/s -- 

C= 58 steps/m & FC= 7 cm 21.09 cm 20.4 cm/s -- 

Sl= 5 cm & FC= 3.5 cm -- 6.5 cm/s 78.5 steps/min 

Sl=5 cm & 70% lat. oscillation -- 8.1 cm/s 97.08 steps/min 

Table 6-1: Maximum values for step length, forward velocity and cadence obtained when 
changing the level parameters of the DMP trained with the single demonstration.  

6.5 Final Remarks 

Motion transfer from humans to humanoids must respect the kinematics and dynamics 

differences between the two. The motivation for the proposed novel approach results, 

in part, from the fact that the human demonstrations are extracted using the “robot-

like” gait style in which the stance foot will be constrained to remain in flat contact 

with the ground. The approach proposed in this chapter is divided into an offline and 

an online phase. The first phase relies on spatiotemporal scaling of a set of locomotion 

parameters that characterize the gait pattern such that human and robot scale 

uniformly in all dimensions and, thereby, maintain their proportions. In the second 

phase, balance constraints are imposed through a reference COP used as input 

argument for a reduced model that allows computing the trajectory of the robot’s 

centre of gravity (COG). After this step, a computational method relates the CoG of 

the whole-body with active joints by resorting to a differential mapping based on the 

Jacobian.  

However, it is worth noting that whether such reduced models are valuable at the 

planning stage for obtaining the necessary single demonstration, the final 

implementation still needs to formulate control laws for the entire system. The actual 

joint trajectories are subsequently obtained by imposing additional constraints with 

the implementation of the balance controller. From a control perspective, the need for 

adaptability and stability in biped locomotion should be accomplished by combining 

both feedforward and feedback processes. The proposed control architecture allows 



Human-to-Humanoid Motion Transfer  139 

 
 

addressing the role of feedforward adaptation at the planning level without feedback 

control or, alternatively, a hybrid solution in which feedback can be important in 

compensating for disturbances common in legged systems subject, for example, to 

cyclic impacts with the ground. 
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Chapter 7  

Adaptive Robot Biped Locomotion 

In order to properly function in real-world environments, the gait of a humanoid robot 

must be able to adapt to new situations, as well as to deal with unexpected disturbances. 

A promising research direction to address these requirements is the modular generation 

of biped locomotion resulting from the combination of a set of basic primitives 

extracted from human demonstrations. In this chapter, a robot control framework that 

provides adaptive biped locomotion by combining the modulation of dynamic 

movement primitives (DMP) with rhythm and phase coordination is presented. Instead 

of selecting movement primitives from a library based on the current task context, the 

important concept of generalization from a single demonstration will be addressed.  

One objective of this chapter is to present the prerequisites of the robot system upon 

which the control framework will be established. The second objective is to evaluate 

how the proposed framework can be used to generalize and adapt the single 

demonstration extracted in the preceding chapter by adjusting a few open control 

parameters of the learned model. The applicability of the proposed control architecture 

is demonstrated by numerical simulations, focusing on the adaptation of the robot’s 

gait pattern to irregularities on the ground surface, stepping over and avoiding obstacles 

and, at the same time, on the tolerance to external perturbations. 
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7.1 Prerequisites and Research Context 

The main hypothesis to verify at the end of this chapter is that a control system using 

modulation of a single-demonstration, encoded with DMP, can yield relevant adaptive 

capabilities for biped robots. For that purpose, the prerequisites and assumptions for 

the underlying humanoid robot system will be outlined. Then, the research context 

within which the study of adaptive biped locomotion occurs will be emphasized.  

7.1.1 System Premises 

This study makes important assumptions regarding the operation of both the 

perception and the actuation systems. The perception system consists of (i) a vision 

system providing reliable information about environmental conditions and changes, 

(ii) force sensors on both feet providing information about foot-ground contacts, 

weight distribution and estimates of the CoP location, and (iii) inertial sensors 

providing information about the orientation of the trunk section relative to the gravity 

vector.   

This work assumes the existence of a reliable vision system that contributes for 

planning locomotion movements towards adaptive behaviour. Although the V-REP 

simulator provides vision sensors that allow extracting complex image information 

from a simulation scene, the implementation is based on the prior knowledge of the 

relative position and properties of the different elements in the environment in each 

instant of time. Additionally, uncertainty of measurements is expressed by additive 

noise characterized by a Gaussian distribution. In terms of perception system, vision 

will support important behaviours such as gait cycle modulation, navigation and 

obstacle avoidance. For example, when moving around or stepping over a perceived 

obstacle, the vision system will provide accurate information about the properties of 

the obstacle and surrounding environment that can be used to pre-plan subtle gait 

adjustments guiding the foot placement. In this context, an appealing feature of 

Cartesian trajectories is that they can be easily planned based on visuospatial 

information. 



Adaptive Robot Biped Locomotion  143 

 
 

From the viewpoint of the actuation system, this work considers direct joint 

actuation driven by independent controllers. Thus, the humanoid robot is controlled 

using position control servo-loops based on low-level feedback units in a position 

control framework. This conventional motion control system considers the torque 

saturation assuming that each joint actuator has a limit value of torque available. This 

lays the groundwork for introducing the control framework that guided this research. 

7.1.2 Adaptive Behavior: Study Context 

The previous subsection discussed the prerequisites and the assumptions made 

throughout the work. This section clarifies the context of the study from the viewpoint 

of adaptive biped locomotion. In general, adaptive behaviours require the processing 

of a continuous flow of sensory information and their conversion into a sequence of 

actions. Adaptive behaviour can be established with closed-loop processes based on 

external (environment) and internal feedback, which express intent through behaviour 

in the environment and which evaluate the consequences of those behaviours to 

promote learning.  

The basic structures guiding this research are the dynamic movement primitives and 

the coupled phase oscillators. Bearing this in mind, the aim of this research is to 

elucidate simple mechanisms and to suggest useful components to achieve adaptive 

walking, focusing on the modulation of motion primitives extracted from a single-

demonstration. On the contrary, topics such as automated adaptation, robot learning 

or performance optimization are out of the scope of this research. 

In this line of thought, adaptation may occur at two levels through trajectory 

modulation. On the one hand, high-level commands provide spatial adaptation guided 

by task specific goals and anticipatory information about the environment conditions. 

For example, adaptation can be induced by the need to change task specific parameters 

or to coordinate the activity of the limbs for synchronization or phase-locking. In 

general, these higher-level directives typically arise point wise as needed supported by 

proprioceptive and visual feedback. On the other hand, low-level sensory information 

provides temporal adaptation through phase and rhythm coordination. Modulating 

walking rhythm in response to sensory information (e.g., swing-foot contact based on 
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ground reaction forces) is an important element to generate adaptive and robust 

walking.  

It is worth note that all the simulations are performed by adjusting parameters of 

an encoding model learned from a single-demonstration without being able to change 

the learned model itself or incorporate a closed-loop postural control system. The 

resulting behaviour simply emerges from the DMPs modulation without any other 

interference or compensation from the postural control system. In this sense, the 

importance of the achieved results must be understood by comparing the range of 

parameters for which the humanoid robot restores the coordinated patterns (reach the 

goal) or the increased tolerance to external perturbations. Several experiments will be 

conducted to demonstrate: (i) the importance of spatial adaptation using DMP 

modulation; (ii) the role of changing between rhythmic and discrete DMP to allow 

precise foot placement and overcome terrain irregularities, and (iii) the role of phase 

and rhythm resetting for adaptive locomotion subject to perturbations.  

7.2 Robot Control Framework 

The approach followed in this work for controlling humanoid robots involves the use 

of single human demonstrations as input for teaching them to perform locomotion 

tasks. The low-level representation of the corresponding trajectories will be used by 

the robot online, in an autonomous manner, accommodating novel constraints and 

goals by adjusting a few open parameters of the learned model. This will generate new 

movements which fulfil task-specific features, while maintaining the overall style of 

the demonstration.  

7.2.1 Control System 

The global control system is depicted in Fig. 7.1. The typical scenario for the robot 

operation will be the following: the humanoid walks in an unknown environment, 

being confronted with novelty, change and uncertainty. The robot must carefully 

adapt its gait either guided by visual feedback or by sensory information provided by 

force sensors in the feet. Accordingly, the proposed control system can be seen as a 
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hybrid approach characterized by a homogeneous layout located between reactive and 

deliberative systems, that shows no conceptual break between the two layers.  

The movement control system comprises two basic structures: the pattern 

formation system and the rhythm and phase generator system. The former is based on 

dynamic movement primitives (DMP) learned on task space, requiring an accurate 

modelling of the inverse kinematics. The latter consists of a set of coupled phase 

oscillators, embedded in the first one, providing adaptability through phase and 

rhythm coordination. Visual feedback will provide spatial adaptation guided by task 

specific goals and anticipatory information about the environment conditions. Gait 

modulation is achieved by appropriate changes of the DMP open parameters, namely 

amplitude, offset and frequency.  

At the same time, the modulation based on the force sensors will provide temporal 

adaptation through phase and rhythm coordination. This will be associated to the 

coupled phase oscillators in each leg for more robust locomotion when dealing with 

unexpected disturbances. Bearing these assumptions in mind, the next subsections 

detail the most important subsystems, namely, the pattern generator based on DMP 

and rhythmic and phase coordination. 
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Fig. 7.1: Blocks diagram of the global control system. 
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7.2.2 Pattern Generation Based on DMP  

As already mentioned, the problem of rhythmic pattern formation is addressed using 

dynamic movement primitives learned in task-space. An extensive study of DMP has 

already been presented in Chapter 4. The coordinate system is fixed to the hip section 

of the humanoid robot that serves as a reference frame where tasks are presented. The 

y-axis is aligned with the direction of movement, the z-axis is oriented downwards and 

the x-axis points towards the lateral side to form a direct system. 

In line with this, a total of six DMP are learned to match the Cartesian trajectories 

of the lower extremities of both feet (end-effectors), using a single demonstration. Each 

DMP will correspond to a transformation system and all share the same canonical 

system. Therefore, the canonical system provides the temporal coupling among DoFs, 

the transformation system achieves the desired attractor dynamics for each individual 

DoF and the respective forcing terms modulate the shape of the produced trajectories. 

At the end, the outputs of the DMP are converted, through an inverse kinematics 

algorithm, to the desired joint trajectories used as reference input to a low-level 

feedback controller.  

Our single demonstration signal obtained in Chapter 6 and a pre-programed 

reference signals are show in Fig. 7.2 (solid lines) together with the learned ones (dashed 

lines). The grey shaded regions show the phases of double-support. Once the complete 

desired movement is learned, new trajectories with similar characteristics can be 

generated, satisfying the desired stability conditions. These charts allow understanding 

the relationship between the DMP parameters (i.e., amplitude and offset) and task 

specific parameters, such as step length 
lS , hip height 

hH , foot clearance 
cF . 

For example, the amplitudes of the DMP associated with the y- and z-coordinates 

are used to modify the step length and the foot clearance of the support leg (or swing 

leg), respectively, as identified in Fig. 7.2. In a similar way, the frequency parameter is 

used for speed-up or slow-down the motion, affecting the robot’s forward velocity. It 

also should be noticed that the right foot signal can be defined from the left foot signal 

by defining a phase difference of 180 degree for between the canonical systems of each 

leg. All the experiments on the following sections where performed using both signals. 
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Rhythmic DMP offer the advantage of being periodic so the signal will repeat itself 

as long as the phase oscillator keeps on running. Also, the change of the high order 

parameters will easily relate to the gait parameters, like Sl, FC and Hh when using them 

in the task space, and they can be changed online. The presence of a phase oscillator 

also allows the coupling between the oscillators of each leg, keeping them coordinated. 

Despite all these advantages, it is harder (but not impossible at all) to use rhythmic 

DMP to do a precise foot placement and there are some situations where this can be 

necessary (see the examples provided in section 7.3). In this context it would be 

advantageous to use discrete primitives, since the high level parameters allow defining 

the start and end point of the movement (instead of the amplitude or baseline). 

 

Fig. 7.2: Result of learning the single demonstration extracted in the 
preceding chapter for the left leg: the task is specified by the x, y and z-
coordinates of the robot’s foot in the reference frame. Reference signal (solid 
line) and trained signal (dashed line) are superimposed. Grey shaded regions 
show double-support phases.  

However, three questions arise: (i) which signal is used to train the discrete DMP? 

(ii) How to change between rhythmic and discrete DMP? (iii) When to change between 

rhythmic and discrete DMP? As for the first question, there’s no apparent reason 

preventing the use of the same signal that was used for the rhythmic DMP. In fact the 

use of this signal, as long as there’s a mechanism that keeps the discrete and the 

rhythmic DMP synchronized, has the advantage to allow switching between them 

without creating abrupt transitions. However, the signal should not be used in the 
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same way it is used to train the rhythmic, i.e., the starting point and end point for the 

discrete DMP would not be the same as the one defined for the rhythmic DMP. 

Instead, and since the objective of the use of a discrete DMP (that has no need to be 

periodic, there so, the start and end point don’t have to be the same) is to create a 

mechanism for precise foot placement, the start point for the y-axis discrete DMP 

should be the start of the first DS phase (somewhere around the 0.5 s  in the signal 

present on the top of Fig. 7.2) and the end point at the start the second DS phase 

(around 1.5 s ). Since at the start of the first DS phase the foot is on the ground, a precise 

knowledge of the current position of the foot is known(notice that the signal keeps on 

decreasing until 0.8 s  because the hip is moving forward, and not the foot that is 

moving). Also, because the start of the second DS phase defines when the foot hits the 

ground, this allows us to define where to place the foot in relation to the previous foot 

position and discount the fact the hip is moving (remember that these signals are seen 

from a referential placed on the hip).  

Now, another question arises: what about the rest of the signal defined in the 

intervals between 0 s  and 0.5 s  and between 1.5 s  and 2.1 s ? In this case, and since the 

signals are intended to be periodic anyway, there is no problem to create a DMP that 

starts at the 1.5 s  and keeps on going beyond the 2.1 s , but replicating the signal that 

goes from 0 s  until the 0.5 s . The only care that should be taken is the correct choice 

of the DMP output point in the correct time. A similar procedure can be applied to 

the x-axis DMP. As for the z-axis DMP, the main points of interest are the FC and the 

Hh (which ultimately will define the z position of foot); so here the DMP should also 

be divided in two, but one starting at 0 s  and ending at the middle of the cycle (≈1.05 s

) and the other starting at the end of the first and ending at the end of the cycle. This 

way the start point and end point of each one will allow for adjusting the 
cF  and 

hH  

values. This choice for the discrete DMP increases the number of DMP, but since 

encoding the DMP is a simple task, the complexity is still low. 

As for the second question, and since the discrete DMPs are trained with the same 

signal as the rhythmic DMPs, the change between one and another will simply be done 

by passing to the output controller the returned signal of the selected DMP. As long as 
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they are kept in synchrony, there will be no abrupt transitions on the movement. 

Remember that the rhythmic and discrete DMP timings are defined by the canonical 

system expressed by equations (4.3) and (4.4), respectively. 

For the final question, the answer lies simply on the environment. For example, if 

a robot is walking on a flat surface and is suddenly faced with some irregularities on its 

path (like the one found in Fig. 7.4), a change from rhythmic DMP to discrete DMP 

will allow it to define the precise placement of the foot (be it between the irregularities, 

or on the top of them). 

7.2.3 Rhythmic and Phase Coordination 

DMP exhibit a desirable property in the context of robot learning from demonstration; 

the system does not depend on an explicit time variable, giving them the ability to 

handle spatial and temporal perturbations. This property makes them attractive in 

order to create smooth kinematics control policies that can robustly replicate and adapt 

demonstrations. However, functional locomotion requires continuous modulation of 

coordination within (intra-limb coordination) and between (inter-limb coordination) 

legs to flexibly accommodate demands of real-word environments. For that purpose, 

one canonical system per leg and multiple transformation systems associated with the 

x-, y- and z-coordinates of the robot’s end-effectors are adopted.  

Intra-limb coordination results from planning trajectories in the Cartesian space, 

constraining the leg to act as one unit. Adaptation of inter-limb parameters is also 

essential to restore the symmetry of the gait cycle in order to reduce the likelihood of 

becoming unstable. For example, whenever one leg is constrained by external 

perturbations, compensatory reactions in the other legs are expected such as to restore 

the phase relationship among them. In particular, phase coordination between legs is 

provided by two separate canonical oscillators coupled such that the left and the right 

limbs move 180 degrees out-of-phase. Finally, rhythm modulation is achieved by phase 

resetting the nonlinear oscillators based on foot-contact information (a kinematic 

event) that depends on force sensors placed on the feet.  

As a result, the dynamics of the phase oscillators for the left and the right leg, are 

modified according to:  
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where φK  is the coupling strength parameter ( 0>φK ) , 
contactφ  is the phase value to be 

reset when the foot touches the ground, ( )⋅δ  is the Dirac’s delta function, 

( )right left, =it contact
i  is the time when the foot touches the ground and t∆  is a factor used 

to study the influence of delays in both sensory information and motor control. 

7.3 Spatial Adaptation to Ground Irregularities 

This section is dedicated to the evaluation simple strategies to achieve spatial adaptation 

using DMP modulation. The simplicity of the control architecture is here illustrated 

by examples in which the step length changes to adapt to the environment, the foot 

clearance increases to overcome an obstacle, the hip height is reduced to promote 

stability or the baseline of the oscillation is changed to define the foot lateral placement. 

In all the experiments, it is assumed that visual feedback provides information about 

the location (distance) and dimensions of the objects placed on the environment that 

the robot can use to modify its behaviour. Once again, it should be noted that all 

experiments performed hereinafter will use the same set of model and control unit 

parameters. 

7.3.1 Adaptation to Ground Irregularities 

Biped walking in irregular terrains depends on prediction about when the swing foot 

touches the ground. The adaptation can be performed on the fly using an estimate of 

the overall motion’s duration or, instead, the system should react based on sensory 

information such as foot-contact events. In any case, the robot’s behaviour needs to be 

modified online and the global shape of the learned movement needs to be adapted 

during the execution so that the robot can maintain its postural stability.  
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In this first experiment, the phase and rhythm resetting is disabled by the high-level 

directives when the humanoid robot, walking over a level surface, finds a small step of 

2 cm high used to approximate irregularities of the environments. Here, the learned 

DMP parameters are modulated online to properly incorporate the sensory 

information from the force sensors mounted on the robot feet. More concretely, the 

dynamic event corresponds to foot-contact information at the instant of impact of the 

swing foot with the ground. Fig. 7.3 and Fig. 7.4 illustrate several snapshots of the 

robot walking response without DMP modulation and with the adjustments of the 

DMP parameters, respectively.  

 

Fig. 7.3: Snapshots of the robot’s response when walking on a level surface 
and it finds a small step 2 cm high. Without DMP modulation, balance is 
disturbed and the robot falls down.  

 

Fig. 7.4: Snapshots of the robot’s response when walking on a level surface 
and it finds a small step 2 cm high (detail of foot placement provided on the 
top of the figure). With DMP modulation, the robot tolerates the 
irregularity. 
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It was found that using the locomotion pattern as defined by the learned DMP 

without any modulation, the robot tolerates step irregularities up to 0.5 cm height. 

Here, the proposed strategy is to change the baseline in the z-coordinate which 

corresponds to the hip height. When the left foot hits the irregularity, if nothing is 

done, the hip will keep on rising. This will make the right foot rise before full transfer 

of the weight to the left foot is complete. 

Since the hip height is higher, this has also another effect: when the right foot ends 

its movement on the next step, the foot is not in touch with the ground (hip is higher, 

movement extension of the leg has not been modified); At this time, the robot starts 

to transfer the weight to this foot, but the foot is not in contact with the ground to 

support it, and so the robot will fall. When the baseline is reset to the current value 

and the amplitude set to zero, the rising of the hip is prevented, avoiding this 

phenomenon. 

 

Fig. 7.5: The response of the dynamical system is highlighted in the top plot 
after the instant of foot-contact (black dashed line at 5.4t s= ). The grey 
shaded regions show phases of double-support, being clear an increase in the 
specific stride according to the adopted strategy. The dashed line represents 
the original DMP without modification. The red line represents the use of a 
discrete DMP instead of the rhythmic for the z-axis. 
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Since DMP tends to smooth the movement, it can be seen in Fig. 7.5 that the DMP 

still rises a little after the foot contact (solid blue line, at 5.4 s≈ ), but then it slowly 

decays to the expected value, when the foot is already stable on the ground. This 

compensatory reaction allows the robot to keep stability, returning to the original 

movement after a short period of time marked in the plot by a vertical dashed-line (at 

6.7t s= ). 

 

Fig. 7.6: Vertical LHEE marker position taken from a referential placed at 
the hip, when walking in “robot-like” mode over an irregularity placed on 
the path. 

Looking at the heel trajectory (see Fig. 7.6) captured with the VICON system for 

the “robot-like” gait when overcoming an obstacle (situation similar to the one 

presented here), confirming that the devised strategy is consistent with what is 

performed by the human subject. In fact, at the beginning, the hip height is around 990 

mm ( 0t s= ) and between 1t s≃  and 3.5t s=  the height is reduced to around 940 mm. 

This corresponds to two steps taken over an obstacle placed on the left foot path with 

a height of 50 mm. Finally at 3.6t s=  the hip height is resumed to the original value. 

It should also be noticed that the step length is modified by changing the amplitude 

of the DMP on the direction of the movement (see Fig. 7.5, bottom). This change is 

based on the assumption that the visual feedback provides the robot constant 

information about the irregularity position and distance from the foot. The robot has 

also information about the maximum step length it can perform, and based on the 
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distance from the irregularity, it adjusts the step length so that on the next step the foot 

will land on the top of the irregularity. Also, typically decisions that involve changes 

on the step length are performed on the double support phase to promote stability of 

the robot. 

7.3.2 Combining Discrete and Rhythmic Primitives 

As mentioned before, one problem of biped gait generation has been, so far, the 

development of performant locomotion according to specifications. For example, it is 

possible to generate rhythmic locomotion, but it is difficult to achieve precise foot 

placement when working in a real world environment. This subsection discusses the 

solution to overcome this problem by combining rhythmic and discrete DMPs. 

In line with this, the previous experiment is repeated, but the robot behaviour 

results from combining discrete and rhythmic primitives. Instead of modulating the 

rhythmic DMPs, an initial switch from rhythmic to discrete is performed, followed by 

the return to the rhythmic state after having overcoming the irregularity. This switch 

is represented by the red line in Fig. 7.5, showing the response of the dynamical system 

with the exchange from the rhythmic to the discrete primitives and back again to the 

rhythmic one.  

Notice that in this case, since the final hip height can be controlled, the value for 

the hip is now lower than the one given by the modulated rhythmic. This promotes a 

better stability to the movement, since the hip height can now be reduced in the 

amount equal to the obstacle height. Several experiments where performed, finding 

that by using the change to discrete DMP instead of the simply modulating the 

rhythmic, the maximum height for the irregularity could be increased from 2.5 cm up 

to 5 cm. An example of the robot overcoming a 5 cm tall irregularity is shown in Fig. 

7.7. A few more experiments performed found that the other dimensions of the 

irregularity could be reduced down to 11 cm ×  6 cm (for reference, the Asti foot size 

is 16 cm ×  22 cm). 

Based on the possibility of changing between rhythmic and discrete DMPs for 

allowing precise foot (and hip height) placement, a more complex scenario was built 

involving two irregularities with different heights. Fig. 7.8 shows a sequence of 
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snapshots, where the trajectory performed by the robot is visible. On the right top of 

the first 4 snapshots, a detailed frontal view of the foot placement for that snapshot is 

visible. In the same image, on the two first frontal view of the foot, it is clear that the 

right foot is not aligned with the irregularity ahead, and so a correction will be 

necessary. 

 

Fig. 7.7: Snapshots of the robot’s response when walking on a level surface 
and it finds a small step 5 cm high on the path that could disturb its balance. 

  

Fig. 7.8: Snapshots of the robot’s response when walking on a level surface 
and it finds 2 irregularities with different heights on the path of each foot. 
On the top right corner there’s a detail frontal view of the foot placement.  

Due to the complexity of this path, the robot performs many changes in all the 

DMP so each one will be detailed independently. Fig. 7.9 shows the time evolution of 

the DMP related with the z-axis where the key events are marked with black dashed 

lines: 

• At 0.47 s  (first of the black dashed lines), the hip height is reduced. This is done 

since it will allow for a bigger foot clearance and it will increase the stability; 
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• At 2.7 s  the foot clearance is increased in order to give some room that will allow 

the foot be placed on top of the first irregularity. Also, this is only done at this 

moment to give some time for the system to react to the first change described 

above; 

• At 5.15 s  the left foot is now starting descending to the irregularity, so the 

rhythmic is replaced by a discrete DMP that has been synchronized with the 

DMP from the beginning. The goal parameter of this discrete DMP has been 

adjusted as the previous hip height minus the height of the obstacle. As already 

explained, this will prevent the rise of the hip before the transfer of the weight 

and balance to the left foot is concluded. If this was not done, the right foot 

would start to rise with the weight of the robot still on it and the robot would 

lose its balance; 

• At 5.75 s  the weight is now all on the left foot, but there is another irregularity 

to overcome by the right foot. So, at this moment the goal of the discrete DMP 

associated with the left foot is adjusted to raise the hip so that the right foot can 

be placed on the top of the irregularity on its path; 

 

Fig. 7.9: Output of the dynamical system for both feet and the z-axis. For 
simplicity, the original DMP is not shown. Black dashed lines mark key 
events. 

• Since now there is also an irregularity on the path of the right foot, at 6.16 s  the 
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This discrete DMP has the goal parameter defined as the result given by the 

current hip height for left foot minus the difference of heights between the 

irregularities;  

• At 6.76 s  two important and connected changes happen: since this is the 

moment the left foot “leaves” its irregularity, the hip height must be decreased, 

or else when the left leg “fully extends”, it will not be touching the ground when 

the weight transfer starts, making the robot lose the balance and fall; by lowering 

the hip height this is avoided, but has a side effect that is the left foot hitting the 

irregularity that is about to leave; to avoid this the foot clearance of the left foot 

is also increased at this moment; 

• At 7.2 s , the foot clearance of the left foot is resumed to the previous values; 

• Finally, at 8.2 s  the right foot has exited the irregularity and the robot can now 

switch to the rhythmic DMP again. 

 

The response of the dynamical system on the y-axis is shown in Fig. 7.10 and the 

key moments marked with the black dashed lines correspond to the following changes: 

• At 2.87 s , based on the information given by the perception system, the robot 

adjusts the step length to a value that will guarantee that the left foot will be 

placed on top of the first irregularity; 

 

Fig. 7.10: Output of the dynamical system for both feet and the y-axis. For 
simplicity, the original DMP is not shown. Black dashed lines mark key 
events. 
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• This adjustment of the step length will not guarantee that the right foot will be 

correctly placed on the top of the second irregularity, so at 5.8 s  the robot adjusts 

the step length only for the right foot; 

• Finally, at 6.7 s  the step length of the right foot is resumed to the previous value 

in order to guarantee that the right foot will clear the irregularity that is just 

leaving. 

 

Fig. 7.7 showed on the detailed view of the feet that the right foot is not aligned 

with the irregularity that it is on its path. This requires a correction on the DMP related 

with the movement on the x-axis and the output of the dynamical system related with 

this foot and axis is shown in Fig. 7.11 and two events occur: 

• At 5.8 s , the baseline of the DMP is changed. This will force the right foot to 

move to the right and in this way will be placed correctly on top of the 

irregularity right ahead of it. Notice that this change is performed exactly when 

the foot is leaving the ground; 

• At 6.7 s , the baseline of the DMP is resumed to the previous value. At this 

instant, the right foot is on the ground and the left foot has just started to rise. 

This will then force the left foot to move to the right, getting closer to the right 

foot and avoiding the robot to walk with the legs spread. 

 

Fig. 7.11: Output of the dynamical system for the right feet x-axis. For 
simplicity, the original DMP is not shown. Black dashed lines mark key 
events.  
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Since one of the experiments performed in the VICON lab was similar to this 

scenario, some results from the kinematics analysis can be compared to human 

walking. For comparison purposes, Fig. 7.12 shows the heel markers position when 

seen from a referential placed on the hip. Some similarities are found, such as: 

• The increase of the foot clearance near the 3.5 s ; 

• The hip height reduction at 3.6 s , when stepping on the first obstacle, followed 

by a rise when the right foot is rising 

• The hip height reduction when stepping the second obstacle (height higher than 

the first) around 4.2 s . 

 

Fig. 7.12: Left and Right heel markers position seen from a referential placed on the hip, 
when walking on “robot-like” gait and stepping in two obstacles with different heights. 

7.4 Anticipatory Adaptation for Obstacle Avoidance 

This section will evaluate the performance of the proposed control system by 

examining anticipatory adaptation for three different kinds of obstacles found by the 

robot during walking: stepping over obstacles, overcoming a narrow path and turning 

to avoid an obstacle. In this context, the robot system is supposed to receive visual 

information regarding the obstacle location in order to modulate the basic gait pattern.  
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7.4.1 Stepping over Obstacles 

Several computer simulations of varying heights and proximity were conducted. Fig. 

7.13 shows a sequence of captured images of the robot stepping over a 5 cm obstacle 

height. The obstacle, placed at an arbitrary location, is cleared by the sequential 

modulation of the following parameters: the step length and the hip height when 

approaching the obstacle, and the trajectory of the swing foot (foot clearance) while 

stepping over the obstacle.  

Fig. 7.14 depicts the response of the dynamical system during the anticipatory 

modulation, showing how the adaptation of the locomotion parameters is achieved 

when changing the DMP of the y- and z-coordinates of the left foot. The instants in 

which occurs the DMP modulation are marked with vertical dashed lines. First, at 

0.5t s=  the hip height is reduced to promote increased stability. Notice that this change 

is performed when the robot is on the double support phase. At 2.7t s= , the step length 

is adjusted to allow the correct foot placement before the obstacle.  

 

Fig. 7.13: Snapshots of the robot’s response when avoiding an obstacle 5 cm 
high. During the motion, the robot system has available visual information 
to estimate the obstacle location and height. The top plots show close-ups of 
the interesting parts. 

Once again, relying on the information provided by the perception system, the step 

length is chosen so that when the foot is passing over the obstacle, it will be at the 

maximum foot clearance. At the same time, the foot clearance is increased for the first 

time. Notice these changes occur only after the robot will have completely lowered its 

hip and is more stable. Later, at 3.8t s= , the foot clearance is re-adjusted to the obstacle 

height, based once again on the information provided by the perception system. 
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Finally, at 6t s=  the humanoid robot adopts the original step length and foot clearance 

as encoded in the originally learned DMP.  

 

Fig. 7.14: The response of the dynamical system during anticipatory 
modulation of the DMP parameters: the top and bottom plots correspond to 
modulations associated with the z- and the y-coordinate, respectively. Vertical 
black dashed-lines mark the relevant instants and the gray shaded regions 
show phases of double-support. The blue dashed line represents the original 
DMP without modifications. 

7.4.2 Overcoming a Narrow Path 

A similar example of the use of DMP modulation to biped locomotion is shown in Fig. 

7.15. Here a small wall is on the path of the robot and a narrow opening is available 

that allows the robot to go through. The strategy used is to stop the forward movement 
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Fig. 7.15: Snapshots of the robot behaviour when overcoming a narrow path. 

The response of the dynamical system is shown in Fig. 7.16, showing how the 

adaptation of the locomotion parameters is achieved when changing the DMP of the 

x-coordinates for the right foot and y-coordinates for both feet. As in previous examples 

the black dashed lines mark relevant moments. At 2.9t s= , the amplitude of DMP for 

the y-coordinate is set to zero, preventing the robot to proceed forward. Also, the 
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baseline of the x-coordinate is adjusted by -0.1 m. Since at this moment the right foot 

is on the ground, this action will leave to a shift to the left of the left foot.  

The result of this action can be seen on the 3rd snapshot on the top row in Fig. 7.15, 

where the robot appears with the spread legs. At 3.9t s=  the baseline is resumed to the 

previous value. Since now it is the left foot that is on the ground, this procedure will 

make the right leg (and by consequence the body of the robot) shift to the left. These 

two procedures are repeated once again at 4.93t s=  and 5.97t s= , leaving to a second 

step on the left lateral direction (see the 2nd row in Fig. 7.15). Now, since the robot is 

aligned with the opening on the wall, the walking forward can be resumed by re-setting 

the amplitude of the y-coordinate of the DMP for both feet, which is done at 7t s= . 

 

Fig. 7.16: The response of the dynamical system during anticipatory 
modulation of the DMP parameters: the top and center plots correspond to 
modulations associated with the x- and the y-coordinate for the right foot, 
respectively and the bottom plots correspond to the y-coordinate for the left 
foot. Vertical black dashed-lines mark the relevant instants. The blue dashed 
line represents the original DMP without modifications. 

7.4.3 Turning to Avoid an Obstacle 

Another example of the use of DMP modulation is shown in Fig. 7.17 and Fig. 7.18, 

where a transition from straight walk to curved walk allows obstacle avoidance. The 
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well as the corresponding foot clearances. This strategy differs from the human curved 

walking where the turning motion relies on the trunk rotations using the hips. Instead, 

the robot turns with a smooth curve using the rotational moments on the feet that lead 

to slipping to a new direction.  

 

Fig. 7.17: Sequence of images showing the robot turning to avoid an obstacle. 

 

Fig. 7.18: View of the movement path of the robot’s CoG projected on the 
ground with the corresponding turning curve. The black box represents an 
obstacle placed on the path. 
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7.5 Temporal Adaptation Using Phase Resetting 

Closer to the concept of phase transition regulation in vertebrates, adaptability has  

been achieved through the regulation of the stance and swing phases by Righetti & 

Ijspeert, Maufroy and Matos & Santos (Righetti & Ijspeert, 2008; Maufroy et al., 2010; 

Matos & Santos, 2014). Many other researchers have explored the role of phase 

resetting for the generation of adaptive biped walking based on foot-contact 

information using theoretical models and physical robots (Nakanishi et al., 2004b; Aoi 

& Tsuchiya, 2006; Righetti & Ijspeert, 2006). Most of the reported advantages of phase 

shift and rhythm resetting are achieved or maximized when the robot is subject to 

external unpredictable perturbations.  

Our study pursues this dimension of the problem by providing a deeper insight on 

the influence of the phase reset to increase robustness to environment changes and 

external forces. Furthermore, it is evaluated how much tolerance to external forces can 

be gained by using the phase shift in a system subject to delays present in all stages of 

the sensorimotor system, from the delay in receiving sensory information to the delay 

in the actuators responding to motor commands. 

7.5.1 Robustness to Environment Changes 

In this experiment, it is examined how the phase reset of the canonical oscillator 

provides changes on the DMP that allows the robot to overcome a set of irregularities 

that assemble like a set of steps of a small staircase. These consist of two consecutive 

steps up followed by two steps down, each one with 2 cm high. Beside this the robot 

system is also supposed to receive visual information regarding the stairs location and 

height in order to modify the basic gait pattern (foot clearance and step size). Fig. 7.19 

shows the path the robot has to go through and the sequence of captured images of the 

robot stepping on the first step, followed by the second step, and after a few steps on 

this the first down step followed by the final down step takes the robot to the ground 

level. A phase reset is applied as soon the robot senses the foot has hit the ground 

sooner than expected. 
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Fig. 7.19: Sequence of the robot walking through a path with small steps.  

7.5.2 Robustness against External Forces 

In this subsection, an external force is applied to the trunk section of the humanoid 

robot in two situations: a horizontal force is applied in the direction of the movement 

or, instead, in the backward direction. Specifically, after the robot has achieved steady-

state walking, a horizontal force is applied at its CoG for 0.1s . The instant in which 

this external force is applied varies from the moment the left foot leaves the ground to 

the instant when the same foot touches the ground in intervals of 50 ms . In both cases, 

the maximum force tolerated by the robot without falling was measured with and 

without phase resetting. Fig. 7.20 shows the increase on the tolerated forces with phase 

resetting.  

The result of applying a force to the robot, with and without phase resetting, is 

observed on the variation of the CoG velocity on the direction of movement (see Fig. 

7.21). Here a force of 500 N  was applied around the 11.6 s  and it can be seen that 

without phase resetting the robot lost the stability with a high increase on the CoG 

velocity leaving to the fall a few seconds after (blue curve). With phase resetting, the 

impact produces a moderate increase on the CoG velocity, but after a few seconds the 

normal cyclic pattern is recovered. At the same time, the coupling between the phase 

oscillators recovers the phase offset of 180º between each leg. In fact, the phase resetting 

produces an increase on the phase offset to around 205º degrees at the moment of the 
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force application and the coupling returns this offset to the 180º after a few seconds 

(black curve). 

 

Fig. 7.20: Additional tolerance to perturbation forces applied at different 
instants of the movement cycle when using phase resetting. 

 

Fig. 7.21: Velocity of the CoG in the direction of the motion with a 
perturbation force applied at 11.6 s  without and with the use of phase 
resetting. The time course of the phase difference between the oscillators is 
represented in a different vertical axis. 

7.6 Final Remarks 

Humanoid robots intended to work in the real world need to quickly adapt their gait 

to new and unexpected situations. In this chapter, a locomotion control system that 
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combines dynamic movement primitives and coupled phase oscillators to generate 

adaptive biped walking was proposed. On the one hand, online modulation of the 

DMP parameters is used for providing spatial adaptation. The proposed approach is 

based on the assumption that DMP are learned in the task space from a single 

demonstration. Therefore, the humanoid robot is able to switch between different gait 

patterns by modifying DMP parameters that directly relate to the task variables, such 

as step length, hip height, foot clearance and forward velocity. Numerical simulations 

show that the proposed formulation is well-suited to achieve adaptive walking in 

terrains with irregularities and to provide anticipatory adaptation for stepping over 

obstacles.  

On the other hand, the adjustment of rhythm and phase coordination under the 

DMP formulation helps to substantially increase the range of parameters and the 

tolerance to disturbances for which stable walking is possible. Adaptation of the inter-

limb parameters by introducing phase coupling between limbs largely restores 

symmetry of the gait cycle with inherent advantages for stability. In line with this, 

increased robustness to changing environments and against external force 

perturbations in the direction of the robot’s locomotion are obtained. Phase resetting 

is robust to perturbation as it can directly influence the centre of mass’s velocity 

component in the same direction of the robot’s locomotion.  

From a control perspective, the need for adaptability and stability in biped robot 

systems can be accomplished by combining feedforward and feedback processes. These 

results are significant because they show that exploiting the generalization abilities of 

DMP and the phase coordination between legs can reduce the requirements of the 

feedback controller. 
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Chapter 8  

Conclusions 

The main goals proposed on the beginning of the work have been achieved: extraction 

and encoding of human demonstrations is performed using DMP and the development 

of a control framework that allows the robot to adapt to new situations departing only 

from a single demonstration. This chapter summarizes the main conclusions of this 

work, reporting the main developments and results achieved. In addition, some future 

work directions are also addressed. 

8.1 Final Discussion 

This work had, essentially, two main objectives: first, to encode a human 

demonstration and model locomotion tasks. Second, to develop a control framework 

that allows the robot to achieve adaptive locomotion from a single demonstration 

extracted from a “robot-like” human motion capture. In order to achieve the adaptive 

locomotion, the developed framework must be able to shape this signal in an automatic 

way by modifying high level parameters of the encoding tool used. 

Being this a work related to the biped locomotion problem, Chapter 2 started by 

presenting a state of the art of the current research and work done in biped locomotion 

platforms. Talk about biped locomotion without considering the fundamental and 

most advanced biological organism present in nature would make this work less rich. 

Therefore, besides the state of the art in biped locomotion, the most relevant terms of 
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human anatomy, the dominant theories of biped locomotion and the methodologies 

used in control of biped locomotion are presented. 

Transferring human demonstrations to be used on humanoid robots enters an area 

called learning from demonstration. Chapter 3 provides an overview of the main 

techniques used to robot learn, with particular focus on LfD and RL, as well as their 

application to biped locomotion. Besides transferring the demonstrations provided by 

the human teacher to the humanoid robot, these signals must also be encoded in an 

efficient and fast way. Some neurobiological studies have shown that in vertebrate 

animals the basic blocks for movement generation are generated at the spinal medulla 

and modulated by the cerebrum based on sensory information provided from vision, 

tact and other external stimulus. Based in these studies, many tools for encoding basic 

movements have appeared on the literature.  

Chapter 4 provides an overview over these neurophysiological evidences and a 

specific tool created to encode these movements, known as Dynamic Movement 

Primitives. A study of the properties of this tool and their generalization capabilities 

was performed. These studies also show that when performing generalization tasks, 

the generalization error is lower if using the DMP in the task space instead of the joint 

space. This is justified by the following: first, DMP exhibit an invariance property, i.e., 

when changing the goal or the timing of the signal, the original shape is preserved; 

second, generalization of task (like the reaching task presented) is, in general, directly 

related to the Cartesian trajectory performed and not to the joint space. For example, 

by observing the signals representing a reaching task to two different points in space, 

it is more likely that these signal are more equal between them if looked at the 

Cartesian trajectories over time than if looked at the joint values over time.  

Once the encoding task for the single demonstration is defined, there is the need to 

obtain the single demonstration. In Chapter 5, a relevant contribution of this work is 

described. Instead of trying to use direct human data, a new type of locomotion called 

“robot-like” was introduced. This locomotion process simplifies the task of human to 

humanoid transfer, since some of the restrictions usually found in biped locomotion 

tasks are already embedded in the demonstrator movements. A complete comparative 

study of this movement with the human natural gait was also performed in this 
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chapter. It is clear that when the human participant is subject to some restrictions 

found in humanoid robots, the locomotion pattern resembles that found in humanoid 

robots.  

Chapter 6 presents the methodologies used for transferring the single demonstration 

from the human motion data to the humanoid robot. The proposed approach 

combines an off-line phase based on spatiotemporal scaling and an online phase that 

includes a reduced inverted pendulum and a CoG-Jacobian algorithm. Finally, Chapter 

7 presents the control framework that combines all the elements from the previous 

chapters. First, generalization from a single demonstration was accomplished to create 

adaptive movements when the robot faces new situations. Second, rhythmic and 

discrete DMP were combined in order to adapt the robot’s motion to a constant 

changing goal in an autonomous process. Third, the proposed pattern generator 

explores the transition between phases that emerged from events like foot contact or 

foot off, increasing the robustness against external perturbations.  

8.2 Contributions and Publications 

This work has contributed with the following novelty in the aspects related to the 

biped locomotion problem: 

• Instead of extracting the human demonstrations from a normal human like, 

these one were extracted from a “robot-like” walking gait, resulting in less effort 

to transfer the motion to the robot and extract the CoP. 

• A single demonstration signal has been used with the ability to adapt to new 

situations by simple changes on the high level parameters of the pattern 

generators based on dynamic movement primitives. 

• The combination of rhythmic and discrete DMP, defined in task-space, increased 

the adaptability of the robot to new situations encountered on the environment, 

given the direct relationship with the locomotion parameters. 

• The phase-reset under the DMP formulation allows moving from the classical 

time-based control into an event-based control. The proposed pattern generator 
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explores the transition between phases that emerge from interaction of the 

environment of the robot with the environment.  

 

At the same time, this work led to the following publications sorted by date, 

including journals, book chapters and conference proceedings:  

• Rosado, J., Silva, F., Santos, V., & Lu, Z. (2013). “Reproduction of human arm 

movements using Kinect-based motion capture data.” In Robotics and 

Biomimetics (ROBIO), 2013 IEEE International Conference on(pp. 885-890). 

IEEE. 

• Rosado, J., Silva, F., & Santos, V. (2014). “A Kinect-Based Motion Capture 

System for Robotic Gesture Imitation.” In ROBOT2013: First Iberian Robotics 

Conference (pp. 585-595). Springer International Publishing. 

• Rosado, José, Filipe Silva, & Vítor Santos (2014). “Using Kinect for Robot 

Gesture Imitation.” Procedia Technology 17: 423–30. 

• Rosado, José, Filipe Silva, & Vitor Santos. (2014). “Motion Generalization from 

a Single Demonstration Using Dynamic Primitives.” In 2014 IEEE International 

Conference on Autonomous Robot Systems and Competitions (ICARSC), IEEE, 

327–32. 

• Rosado, J., Silva, F., & Santos, V. (2014). “Motion Generalization with Dynamic 

Primitives.” Mobile Service Robotics: CLAWAR 2014, 12, 215. 

• Rosado, J., Silva, F., Santos, V. (2014). “Generalization of Biped Locomotion 

Tasks with Dynamic Motion Primitives.”, Proceedings of the Workshop on Policy 

Representations for Humanoids Robots, IEEE-RAS International Conference on 

Humanoids Robots, Madrid, Spain, 2014. 

• Rosado, J., Silva, F., Santos, V., & Lu, Z. (2015). “Modulation of Dynamic 

Movement Primitives for Biped Locomotion.” In Assistive Robotics: Proceedings 

of the 18th International Conference on CLAWAR 2015 (p. 389). World Scientific. 

• Rosado, J., Silva, F., Santos, V. (2015). “Adaptive Behavior of a Biped Robot 

Using Dynamic Movement Primitives.”, In Proceedings of the 17th Portuguese 

Conference on Artificial Intelligence, EPIA 2015, Coimbra, Portugal. 
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• Rosado, J., Silva, F., & Santos, V. (2015). “Biped Walking Learning from 

Imitation Using Dynamic Movement Primitives.” In Robot 2015: Second Iberian 

Robotics Conference (pp. 185-196). Springer International Publishing. 

• Rosado, J., Silva, F., & Santos, V. (2015, April). “Adaptation of Robot 

Locomotion Patterns with Dynamic Movement Primitives.” In Autonomous 

Robot Systems and Competitions (ICARSC), 2015 IEEE International Conference 

on (pp. 23-28). IEEE. 

• Rosado, José, Filipe Silva, Vítor Santos, and António Amaro (2016). “Adaptive 

Robot Biped Locomotion with Dynamic Motion Primitives and Coupled Phase 

Oscillators.” Journal of Intelligent & Robotic Systems: 1–17. 

• Rosado, J., Silva, F., & Santos, V. (2016, May). “Motion Primitives for Human-

to-Humanoid Skill Transfer Under Balance Constraint” In Autonomous Robot 

Systems and Competitions (ICARSC), 2016 IEEE International Conference on. 

8.3 Perspectives of Future Work 

The perspectives of future work are related to improvements of the work currently 

developed and additions that can be performed. Having this in mind, a set of points 

can be enumerated: 

• The combination of imitation (learning from a teacher) and trial-and-feedback 

(learning by practice) appears as a promising direction of research to deal with 

the limitations of existing approaches when taken separately. For example, using 

demonstrations to initialize reinforcement learning provides two obvious 

benefits. The first benefit is that it provides supervised training data of what 

actions to perform in states that are encountered, what may be helpful in terms 

of action selection. The second and perhaps most important benefit is that 

examples from a human demonstrator provide a powerful way for reducing the 

complexity of the search space by either starting the search from the observed 

example or by eliminating infeasible solutions.  

• Adaptation to new situations can be extended to tasks such as stairs climbing 

and walk on slopes. However, it is important to note that adaptation in real 
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word requires a balancing algorithm. For example, a balancing controller based 

on the compensation of linear and angular momenta seems promising in order 

to control, independently, the desired ground reaction force and centre of 

pressure at each support foot  

• Before the proposed methodology can be implemented and tested in the physical 

PHUA robot, it is required to assess its performance in a simulation 

environment. A full-body model of the PHUA was developed to the V-REP 

platform by Barros (Barros et al., 2015). The humanoid platform was designed 

with hybrid actuation for providing a more bio-inspired system.   

 

Fig. 8.1: The full-body PHUA robot model in the V-REP simulator (model 
and scene from Barros, 2014). 

• In the same line of thought, it is worth noting that the human musculoskeletal 

system’s ability to control force and position simultaneously is the key to 

versatile interactions with the environment. Although widely used in robot 

manipulators for stability and dexterity in contact tasks, the concept of 

impedance control (Hogan, 1985) has not been adapted widely in walking 

humanoid robots. In human walking and running, leg and ankle impedance is 

modulated for stable contact with the ground, impact absorption, and energy 
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efficiency (McMahon, 1984). These strategies have been suggested for humanoid 

walking through simulations (Park, 2001) and demonstrated for uneven surface 

walking with a biped robot (Kang et al., 2010).
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Appendix A  

V-REP: Virtual Robot Experimentation 

Platform 

V-REP is probably the most versatile and complete simulation platform for robotics 

software and it is provided by coppelia robotics. It possesses an integrated development 

environment (Fig. A.1), based on a distributed control architecture, where each 

object/model can be individually controlled, be it via an embedded script, a plug in, a 

ROS node, a remote API client or a custom solution.  

 

Fig. A.1: An example of a V-REP simulation scene combining showing the diversity of robot types that can be 

simulated simultaneously and the IDE.  
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V-REP can be used as a stand-alone application, or can easily be integrated into a 

main client application. Here are some of the main features provided by V-REP: 

• Cross-Platform and portable: V-REP is cross-platform and allows the creation 

of portable, scalable and easy maintainable content – a single portable file can 

contain a fully functional model (or scene), including the control code. 

 

  

Fig. A.2: V-REP is multi-platform compatible, provides several programming 
approaches, remote APIs for multi-language programming and offers 4 
physics engines (images adapted from coppelia robotics web page). 

• Multi programming approaches: simulator and simulations are fully 

customizable, with 6 programming approaches that are mutually compatible. 

• Powerfull APIs: the integrated API supports up to 500 functions available in 

Lua, C and C++. The remote API provides more than 100 functions that allow 

control the simulator and the simulation from external environments (other 

IDE, other PC or even a real robot), using C/C++, Python, Java, Matlab, 
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Octave, Lua and Urbi. An interface to ROS is also provided, with 100 services, 

30 publisher types and 25 subscriber types. 

• Dynamics/physics engines: 4 physics engines are provided: Bullet, ODE, Vortex 

and Newton for fast and customizable dynamics calculations that can simulate 

real world physics and object interactions  

• Path/Motion Planning: holonomic path planning in 2-6 dimensions, non-

holonomic path planning for car-like vehicles and motion planning for 

kinematic chains. Custom path/motion planning algorithms are also supported. 

• Building Block Concept: anything – from sensors or actuators, to whole robotic 

systems – can be built within V-REP by combining basic objects and linking 

various functionalities via embedded scripts. Every scene object can have its own 

script. 

 

  

Fig. A.3: V-REP provides IK/FK calculations for any type o mechanism, 
precise minimum distance calculation, proximity and vision sensor 
simulation (images adapted from coppelia robotics web page). 
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Fig. A.4: V-REP allows path/motion planning and building any kind of 
object each one with its own script (images adapted from coppelia robotics 
web page). 

Over the course of this work, all the interaction with the V-REP was made through 

the Matlab API provided, except when the available API functions could not provide 

the necessary information in a direct form; in these situations, the built in script for 

the scene/object was modified and the necessary information was provided via signals, 

a functionality provided in V-REP that allows the communication of information 

between the remote application and the V-REP IDE. The communication between the 

Matlab script and V-REP is done via network interface. Prior to start the 

communication between Matlab and V-REP, a dynamic link library (DLL) provided 

by V-REP (remoteApi.dll) must be loaded using the command: 

vrep=remApi('remoteApi'); 

where ‘remApi’ is a Matlab script provided by V-REP. Both the Matlab script and the 

DLL provided by V-REP must be in Matlab’s path or in the some folder where our 

script is. From this point on, two methodologies exist to start the communication. 

Either the command is done on the Matlab script: 

clientID=vrep.simxStart('127.0.0.1',19999,true,true,5000,5); 

and in this case, the communication will be done with the localhost (127.0.0.1 is the 

computer where the script is running), using the port 19999. This however will require 

two extra steps. The first one is that on the main script on the V-REP scene, the 

following code must be added: 
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simExtRemoteApiStart(19999) 

and then the simulation must be started in V-REP, prior to starting the Matlab script. 

This two extra steps are not very practical, since it requires manual start of the 

simulation in V-REP and there can be scenes where the external control should be 

ready to control or receive information from the V-REP right from the first simulation 

step. So, any extra delay, be it introduced by the time it takes the user to go from 

clicking to start of the simulation in V-REP until it clicks to run the Matlab script, or 

be it by the time the Matlab script can take to load some needed files or run extra code, 

could leave to unexpected outcomes.  

Other option to start the communication is using the same command, but with a 

different destination port: 

clientID=vrep.simxStart('127.0.0.1',19997,true,true,5000,5); 

V-REP is always listening to contacts on the port 19997 (this port can be changed, if 

needed) and this does not require adding any extra code on the main script of the scene 

that is open in V-REP. This also allows the start of the simulation directly from the 

Matlab script, by issuing the command: 

vrep.simxStartSimulation(clientID,vrep.simx_opmode_oneshot); 

Optionally, there can be the need to synchronize the communication between the 

Matlab script and V-REP simulation, by issuing the commands: 

vrep.simxSynchronous(clientID,true); 

vrep.simxSynchronousTrigger(clientID); 

The first command will force the V-REP to pause simulation until it receives the 

second command that will tell V-REP to move to the next step in the simulation. So 

each time it is needed to move to the next step in simulation, the second command 

should be issued. The time duration of each time step on the V-REP IDE can be 

adjusted on the top toolbar (Fig. A.5) and the default value is 50ms. It is possible to 

define any value for this time step, and the default options are: 200 ms, 100 ms, 50 ms, 

25 ms, 10 ms and a custom option where the wanted the time step can be defined. Over 

the course of the simulations done on this work, the value chosen was 10 ms.  
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Fig. A.5: Top toolbar on the V-REP IDE (image adapted from the V-REP 
user manual). 

Among the many robot models present on the V-REP is the Asti model (Fig. A.6, 

left), a humanoid robot with 1.28 m tall, 73 Kg of mass and a total of 20-DoF (Fig. A.6, 

right) distributed as follows: 

• 2-DoF in each foot; 

• 1-DoF in each knee; 

• 3-DoF on the hips for each leg; 

• 2-DoF in each shoulder; 

• 1-DoF in each elbow; 

• 2-DoF on the neck/head; 

Unfortunately, the Asti model does not have force sensors, so there is necessity to 

know information like the time a foot contact with the ground happened or the 

evolution of the CoP, some tweaking has to be made. Two options are possible: either 

force sensors are added to the Asti model, either other functionalities provided by V-

REP are used. Starting by the last option, V-REP API provides the following function: 

simGetContactInfo(…) 

this function returns a total of 8 values: the first 2 are the objects in contact, the next 3 

are the position of contact and the other 3 are the forces generated by the contact in 

the 3 directions. So, with this function it is possible to know when the contact 

happened (the function only returns values, when a contact has happen), which objects 
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entered in contact (e.g., left foot and the ground), and the forces generated by these 

contacts. Since this command is only available on the V-REP API, in order to get the 

information on the remote API, a process to send and receive that information must 

be created. The simple process is the use of signals, using the following commands: 

vrep.simxGetFloatSignal(…) 

vrep.simxSetFloatSignal(…) 

vrep.simxGetIntegerSignal(…) 

vrep.simxSetIntegerSignal(…) 

simGetFloatSignal(…) 

simSetFloatSignal(…) 

simGetIntegerSignal(…) 

simSetIntegerSignal(…) 

 

 

Fig. A.6: The Asti model present on the V-REP model library. Image on 
the right represents the joints of the Asti model. 
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The first four functions are used on the remote script and the last four are used on 

the V-REP scene scritps. The functions with the “Get” keyword on the command 

allow receiving values from a signal and the functions with the “Set” keyword allow 

send values using a signal. The same way, the functions with the “Integer” keyword 

work with only integer values and the functions with the “Float” keyword work with 

decimal values.  

Another problem rises from the use of this function: in order to use the data 

provided by this function to compute the CoP, there is the necessity to know where 

the contact occurred, which objects where in contact (the Asti model returns a contact 

event on the neck/head joint). Also, each time a foot enters in contact with the ground, 

up to 4 points of contact are returned (one at each corner of the foot). Added to all of 

this, the call to the function referred above (simGetContactInfo) returns up to ten 

times at each simulation step (V-REP makes ten computations for each simulation 

step). Even though there’s a parameter on the function that allows defining which 

computation cycle should be used to return the value2, there’s still a need to know 

which one of the four contacts occurred. This was solved using a rather complex 

algorithm.  

Other possibility for getting info of the contact events and related forces is the 

addition of force sensors (Fig. A.7) to the Asti model. The force sensor provided by 

the V-REP library returns the forces and torques on the three dimensions, so a force 

sensor for each foot is sufficient. Force sensors need to connect two dynamic bodies in 

V-REP in order to work, so to add them, an element with the some dimensions of the 

foot was placed on the same place of the foot. To avoid collisions between this element 

and the already present foot, this element is made no respondable. Fig. A.8 shows the 

addition of those elements to the Asti feet. Since these new element are dynamic, the 

previous mass of the feet must now be distributed by the feet and these new element, 

so the dynamics of the robot are not affected. Despite this procedure has been done by 

the author and other corrections suggested by the V-REP team have been made, during 

the simulations done, a change of the dynamics of the robot was noticed.  

                                                           
2 During the course of this work, the author found out there was a bug on this process, which was corrected on a new 

release (more info at http://www.coppeliarobotics.com/helpFiles/en/versionInfo.htm - version V3.1.3 - and at 

http://www.forum.coppeliarobotics.com/viewtopic.php?p=8775#p8775)  
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Fig. A.7: The force sensor element provided in the V-REP library. 

 

 

Fig. A.8: Adding force sensors to the Asti feet: the extra elements added 
(leftFootAux and rightFootAux), the force sensors, the existing feet elements 
and there location on the scene hierarchy tree. 
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Appendix B  

VICON and Experimental Protocol 

The motion capture experiments were performed at the motion lab available at the 

ESSUA installations (Fig. B.1). This lab is composed by a marker based system from 

VICON, 2 force platforms and a total of 30 non-invasive EMG sensors.  

 

Fig. B.1: The motion lab at ESSUA installations. 

VICON system compromises a complete motion capture system composed by the 

following elements: 

• 35 reflective markers (spheres with approximately 1 cm in diameter) placed on 

the body of the subject according to the schema in Fig. B.2. 
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• 8 infrared cameras with 2.0 Mpixel, model MX T20-S resolution capable of 

capturing up to 690fps (Fig. B.3) 

• 2 HD (1280× 720) video cameras, model Bonita 720c, placed on the x and y axis, 

capable of capturing video up to 120fps. 

 

Fig. B.2: Markers placement and name convention on the VICON system. 

 

Fig. B.3: Detailed view of one of the infrared cameras, model MX T-20S.  
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The force platforms (Fig. B.4), models AMTI BP4051040RS-2K-14162 and AMTI 

BP400600-2000, are placed on the centre of the capture area and have the following 

dimensions: 40 cm× 100 cm and 40 cm× 60 cm respectively and a capture rate up to 

1000fps. The captured data is the reaction forces, the moments and the CoP, all on the 

3 axis. All the captured data is kept synchronized with dedicated hardware and stored 

as a set of files that can be later processed.  

 

Fig. B.4: Detailed view of the force platforms; left: with the leveling covers; 
right: without the leveling covers. 

The processing is done with VICON Nexus software, version 1.8.5 (Fig. B.5). This 

software computes the 3D trajectory of each marker, and allows a later storing of this 

information, together with the force platforms information in a user format chosen 

(typically a CSV format file). It is also possible to export information like the markers 

velocity, acceleration and the joints values, velocities and acceleration. Although the 

software has the tools to automatically compute the markers positions for the entire 

motion capture (and recreate the skeleton figure seen in Fig. B.5), this rarely works 

100% OK. Even when the subject stays inside the capture area all the time, when 

turning to do more steps on the opposite direction, some of the markers disappear 

from the scene, making it hard for the software to label them when they reappear latter 

on scene. Also, any reflecting object on the lab can create false positives reactions, 

confusing the software. Some of the tools provided by the software allow filling these 

gaps, but when they are big, the presented solution is not always the correct one and 

the process is typically manual, tedious and time consuming. The best solution is to do 
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the processing in sections that avoid these turnings, losing the data at those turnings, 

which does not represent any problem, since that data is rarely interesting. 

  

Fig. B.5: The VICON Nexus software used to process the captured data a get 
the relevant information. 

 Several experiments were conducted performed by four different subjects with 

heights varying between 1.71 m and 1.85m, weight varying between 70 Kg and 85 Kg 

and ages between 20 and 45 years. The experiments varied between walking on a plain 

surface, overcome an obstacle, pass over an obstacle with only one or both feet, 

stepping up/down some stairs and walking on a slope. Fig. B.6 shows some images of 

the experiments conducted. 

All of these experiments were done walking on both modes: the human natural 

walking and the “robot-like” gait explained in section 5.2. In all experiments, the 

subject always walked without any restriction applied to his visual feedback, i.e., eyes 

always open and plain view of the entire path. For all the experiments, a series of 

protocol rules were defined, in order to assure that all the subjects would introduce the 

smallest variance possible in the same experiments. So, for the walking on plain surface, 

the following protocol was defined: 
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• When walking in human natural gait, walk the closest as possible in straight line, 

following a direction parallel to the y-axis of the VICON referential; 

• Take a few steps, once reached near the capture area, stop, turn around and then 

take a few steps on the opposite direction. Repeat this for at least a total of 10 

complete passages; 

• Repeat the experiments using the same rules above, but with arms movement 

restriction, i.e., the subject should not move his arms; 

• When walking in “robot-like” gait, repeat with the same rules mentioned above.  

 

Fig. B.6: Sequence of images showing some of the experiments performed on 
the motion lab: walking on a plain surface, walking over an obstacle with 
only one foot, stepping up a group of steps on a small stairs, walking on a 
slope. 

A series of other experiments walking in plain surface was made with the objective 

of collecting information from the force platforms. To these experiments, the 

following rules were defined: 

• Either when walking in human natural gait or “robot-like” mode, obey the same 

rules defined above for walking in plain surface;  

• On both modes, try to place one foot completely inside one of the platforms 

and the other completely inside the other platform; 

• Each experiment had several passages performed. 

As for the experiments with an obstacle on the path, three types of experiments 

were performed, with the following rules: 

• On both walking modes (human natural gait and “robot-like” gait) pass with the 

foot over the obstacle without touching it and without put the foot over it;  
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• On both walking modes, walk and place only one foot on top of the obstacle 

(which had about 5 cm height) and the other foot stays on the ground level; 

• On both walking modes, walk with both feet over the obstacle (step up the 

obstacle and step down); 

• Each experiment had several passages performed.  

In the experiments performed with the stairs (with 5cm step height), the following 

rules were given: 

• When walking in human natural gait, step up and down the stairs, by placing 

each foot on a separate step of the stair, i.e., walk like usually a human without 

any gait pathologies does in stairs; 

• When walking in human natural gait, place one foot on one of the steps and 

then place the other foot on the same step (gait typically performed by very 

young children when walking on stairs); 

• When walking in “robot-like” gait, place one foot on one of stair’s step and then 

place the other foot on the same step (a few experiments done previously 

confirmed that when using this locomotion mode, it is very hard to do like 

humans normally do, i.e., like the first rule defined for this experiment); 

• On each experiment, the passage on the stairs was performed several times.  

The last experiment, walking on slopes had no special rules defined. All the subjects 

should do, was walking in both modes. The scenario had a slope up, followed by a 

plain surface and then a slope down. Two different scenarios where built, where the 

only difference between them was the inclination of the slopes. 
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